基于尺度变换原理的SAR波数域成像算法

韦维 朱岱寅 吴迪

韦维, 朱岱寅, 吴迪. 基于尺度变换原理的SAR波数域成像算法[J]. 雷达学报, 2020, 9(2): 354–362. doi: 10.12000/JR19112
引用本文: 韦维, 朱岱寅, 吴迪. 基于尺度变换原理的SAR波数域成像算法[J]. 雷达学报, 2020, 9(2): 354–362. doi: 10.12000/JR19112
WEI Wei, ZHU Daiyin, and WU Di. Wavenumber domain algorithm based on the principle of chirp scaling for SAR imaging[J]. Journal of Radars, 2020, 9(2): 354–362. doi: 10.12000/JR19112
Citation: WEI Wei, ZHU Daiyin, and WU Di. Wavenumber domain algorithm based on the principle of chirp scaling for SAR imaging[J]. Journal of Radars, 2020, 9(2): 354–362. doi: 10.12000/JR19112

基于尺度变换原理的SAR波数域成像算法

DOI: 10.12000/JR19112
基金项目: 国家重点研发计划(2017YFB0502700),国家自然科学基金(61671240),航空科学基金(20182052013)
详细信息
    作者简介:

    韦 维(1996–),男,江苏人,硕士生。研究方向为超高分辨率合成孔径雷达成像技术。E-mail: weiw@nuaa.edu.cn

    朱岱寅(1974–),男,江苏人,教授,博士生导师。研究方向为合成孔径雷达/逆合成孔径雷达(SAR/ISAR)成像以及自聚焦算法,干涉SAR成像,SAR地面动目标指示,以及机载雷达动目标指示技术。自2018年开始担任《雷达学报》编委。E-mail: zhudy@nuaa.edu.cn

    吴 迪(1982–),男,河南人,副教授,硕士生导师。研究方向为雷达信号处理、地面动目标指示技术。E-mail: wudi82@nuaa.edu.cn

    通讯作者:

    朱岱寅 zhudy@nuaa.edu.cn

  • 责任主编:林赟 Corresponding Editor: LIN Yun
  • 中图分类号: TN957.5

Wavenumber Domain Algorithm Based on the Principle of Chirp Scaling for SAR Imaging

Funds: The National Key Research and Development Program of China (2017YFB0502700), The National Natural Science Foundation of China (61671240), The Aeronautical Science Foundation of China (20182052013)
More Information
  • 摘要: 距离徙动算法(RMA)作为一种合成孔径雷达(SAR)频域成像算法,理论上能够达到最优性能。然而,该算法采用逐像素点卷积运算实现Stolt映射,其计算效率无法满足SAR大数据量处理需求。据此,该文提出基于尺度变换原理(PCS)的RMA成像算法。首先,将SAR回波数据沿距离向进行划分,利用子带参考距离处2阶距离方位耦合项与高阶项对子带信号进行补偿;然后,转化非线性Stolt映射为线性形式;最后,利用PCS原理实现Stolt插值,以实现高效率的数据重采样。所提PCS-RMA算法仅利用快速傅里叶变换和复矢量相乘操作即可实现改进型Stolt映射,兼具良好的聚焦性能与较高的计算效率。基于多组仿真数据与X波段1.2 GHz带宽的机载SAR实测数据处理结果,验证了所提算法的有效性,同时该算法可进一步应用于弹载/星载/无人机载SAR数据的快速成像处理。

     

  • 图  1  聚束模式几何模型

    Figure  1.  Geometric model of spotlight mode

    图  2  残余相位误差

    Figure  2.  Residual phase error

    图  3  改进型Stolt插值处理流程

    Figure  3.  Processing flow of modified Stolt interpolation

    图  4  PCS-RMA算法处理流程

    Figure  4.  Processing flow of PCS-RMA

    图  5  点目标分布几何关系

    Figure  5.  Geometric relationship of point target distribution

    图  6  点目标IRF等高线

    Figure  6.  Contours of point target IRF

    图  7  点目标IRF距离向剖面

    Figure  7.  Range profiles of point target IRF

    图  8  点目标IRF方位向剖面

    Figure  8.  Azimuth profiles of point target IRF

    图  9  数据处理时间对比

    Figure  9.  Comparisons of data processing time

    图  10  RMA处理结果

    Figure  10.  Processing results of the traditional RMA

    图  11  PCS-RMA处理结果

    Figure  11.  Processing results of the proposed PCS-RMA

    表  1  点目标仿真参数

    Table  1.   Point target simulation parameters

    参数数值
    载频9.65 GHz
    信号带宽1.5 GHz
    脉冲重复频率1500 Hz
    载机速度100 m/s
    中心斜距10 km
    方位向分辨率0.1 m
    下载: 导出CSV

    表  2  点目标IRF聚焦性能参数

    Table  2.   Focusing performance parameters of point target IRF

    点目标距离向方位向
    PSLR(dB)ISLR(dB)IRW(m)PSLR(dB)ISLR(dB)IRW(m)
    A–13.3728–11.56360.0990–13.2710–11.14090.1017
    B–13.4564–11.58810.1001–13.3030–11.22750.1000
    C–13.5875–9.87720.1001–13.5265–10.75030.1033
    下载: 导出CSV
  • [1] MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301
    [2] 詹学丽, 王岩飞, 王超, 等. 一种基于脉冲压缩的机载条带SAR重叠子孔径实时成像算法[J]. 雷达学报, 2015, 4(2): 199–208. doi: 10.12000/JR14126

    ZHAN Xueli, WANG Yanfei, WANG Chao, et al. Research on overlapped subaperture real-time imaging algorithm for pulse compression airborne strip SAR system[J]. Journal of Radars, 2015, 4(2): 199–208. doi: 10.12000/JR14126
    [3] 唐江文, 邓云凯, 王宇, 等. 高分辨率滑动聚束SAR BP成像及其异构并行实现[J]. 雷达学报, 2017, 6(4): 368–375. doi: 10.12000/JR16053

    TANG Jiangwen, DENG Yunkai, WANG Yu, et al. High-resolution slide spotlight SAR imaging by BP algorithm and heterogeneous parallel implementation[J]. Journal of Radars, 2017, 6(4): 368–375. doi: 10.12000/JR16053
    [4] 胡静秋, 刘发林, 周崇彬, 等. 一种新的基于omega-K算法的稀疏场景压缩感知SAR成像方法[J]. 雷达学报, 2017, 6(1): 25–33. doi: 10.12000/JR16027

    HU Jingqiu, LIU Falin, ZHOU Chongbin, et al. CS-SAR imaging method based on inverse omega-K algorithm[J]. Journal of Radars, 2017, 6(1): 25–33. doi: 10.12000/JR16027
    [5] 王金波, 唐劲松, 张森, 等. 一种宽带大斜视STOLT插值及距离变标补偿方法[J]. 电子与信息学报, 2018, 40(7): 1575–1582. doi: 10.11999/JEIT171068

    WANG Jinbo, TANG Jinsong, ZHANG Sen, et al. Range scaling compensation method based on STOLT interpolation in broadband squint SAS imaging[J]. Journal of Electronics &Information Technology, 2018, 40(7): 1575–1582. doi: 10.11999/JEIT171068
    [6] LIN Yun, HONG Wen, TAN Weixian, et al. Extension of range migration algorithm to squint circular SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 651–655. doi: 10.1109/LGRS.2010.2098843
    [7] TANG Shiyang, ZHANG Linrang, GUO Ping, et al. An omega-K algorithm for highly squinted missile-borne SAR with constant acceleration[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(9): 1569–1573. doi: 10.1109/LGRS.2014.2301718
    [8] SHIN H S and LIM J T. Omega-K algorithm for spaceborne spotlight SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(3): 343–347. doi: 10.1109/LGRS.2011.2168380
    [9] ZHU Daiyin, YE Shaohua, and ZHU Zhaoda. Polar format agorithm using chirp scaling for spotlight SAR image formation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(4): 1433–1448. doi: 10.1109/TAES.2008.4667720
    [10] FAN Bo, QIN Yuliang, YOU Peng, et al. An improved PFA with aperture accommodation for widefield spotlight SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 3–7. doi: 10.1109/LGRS.2014.2322858
    [11] LUO Xiulian, DENG Yunkai, WANG R, et al. Image formation processing for sliding spotlight SAR with stepped frequency chirps[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10): 1692–1696. doi: 10.1109/LGRS.2014.2306206
    [12] LIU Yongcai, WANG Wei, PAN Xiaoyi, et al. Inverse omega-K algorithm for the electromagnetic deception of synthetic aperture radar[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 3037–3049. doi: 10.1109/JSTARS.2016.2543961
    [13] NIE Xin, ZHU Daiyin, MAO Xinhua, et al. The application of the principle of chirp scaling in processing stepped chirps in spotlight SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 860–864. doi: 10.1109/LGRS.2009.2027212
    [14] PIGNOL F, COLONE F, and MARTELLI T. Lagrange-polynomial-interpolation-based keystone transform for a passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1151–1167. doi: 10.1109/TAES.2017.2775924
    [15] CUMMING I G and WONG F H. Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston, MA, USA: Artech House, 2005: 225–362.
    [16] LANARI R and FORNARO G. A short discussion on the exact compensation of the SAR range-dependent range cell migration effect[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(6): 1446–1452. doi: 10.1109/36.649799
    [17] 吴玉峰, 叶少华, 冯大政. 基于方位相位编码的脉内聚束SAR成像方法[J]. 雷达学报, 2018, 7(4): 437–445. doi: 10.12000/JR17114

    WU Yufeng, YE Shaohua, and FENG Dazheng. Intra-pulse spotlight SAR imaging method based on azimuth phase coding[J]. Journal of Radars, 2018, 7(4): 437–445. doi: 10.12000/JR17114
    [18] YANG Mingdong, ZHU Daiyin, and SONG Wei. Comparison of two-step and one-step motion compensation algorithms for airborne synthetic aperture radar[J]. Electronics Letters, 2015, 51(14): 1108–1110. doi: 10.1049/el.2015.1350
    [19] XING Mengdao, WU Yufeng, ZHANG Y D, et al. Azimuth resampling processing for highly squinted synthetic aperture radar imaging with several modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4339–4352. doi: 10.1109/TGRS.2013.2281454
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  5257
  • HTML全文浏览量:  1897
  • PDF下载量:  702
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-16
  • 修回日期:  2020-02-13
  • 网络出版日期:  2020-04-01

目录

    /

    返回文章
    返回