-
摘要: 极化信息能丰富合成孔径雷达(SAR)数据的信息量,在农业、环境、海洋、森林、军事等领域取得了广泛的应用,但同时也面临分辨率较低、幅宽较小的问题,带来较高的应用成本。简缩极化SAR(CP SAR)作为一种能同时获取较为丰富的地表信息并实现较大幅宽观测的极化SAR模式,在过去十余年中引起了科研人员的广泛关注。随着印度RISAT-1卫星的成功发射,简缩极化SAR在一系列应用研究中取得了新进展。该文简要介绍了简缩极化SAR的经典数据处理方法,总结了近十余年来简缩极化SAR在农业和海洋应用领域的主要研究成果,最后对其发展方向进行了分析与展望。Abstract: Polarimetric information enriches the content of a Synthetic Aperture Radar (SAR) and has been widely used in agriculture, environment, ocean, forest, military, and other fields. However, it also faces limitations regarding its low resolution and small width, which lead to high application cost. As a novel polarimetric SAR system that can simultaneously obtain relatively rich scatter information and large swath, Compact Polarimetric SAR (CP SAR) has attracted extensive attention from researchers in the past decade. With the successful launch of India’s RISAT-1 satellite, new progresses have been made in the application fields on CP SAR. In this paper, the classical data processing methods of CP SAR are briefly introduced and the main research results of the application of CP SAR in the agriculture and maritime fields over the past 10 years are summarized. Finally, the prospects on its development are given.
-
1. 引言
海洋涡旋是一种旋转的、以封闭环流为主要特征的水体,是由于各种气象因素作用和海洋动力不稳定性形成的。作为一种重要的海洋现象,涡旋不仅能够影响海洋流场与化学物质的输送,从而对海洋的环流结构和海洋生态等产生重要作用,还能通过海气相互作用,对风场、云及降雨等大气现象产生影响[1,2]。
合成孔径雷达(Synthetic Aperture Radar, SAR)具有全天时、全天候、高分辨率、广覆盖面等优点,对海洋涡旋探测具有特殊意义,受到国际海洋遥感界的重视。然而,涡旋在SAR成像时会受到各种海洋环境因素的影响,通过真实SAR图像难以完全解译涡旋的特征。利用仿真SAR图像可以为涡旋的SAR图像特征解译提供指导,但是目前利用SAR图像对涡旋的研究主要集中在涡旋的统计性研究[3–5]、涡旋的形成机制和成像分类[6–8]以及涡旋的检测和特征提取方面的研究[9–12],极少有关于涡旋SAR图像仿真方法的研究。
由于海面随机运动且电磁散射特性复杂,难以进行时间和空间上的SAR原始回波仿真。海浪谱能够描述随机海面不同波长海浪的能量分布情况,因此利用海浪谱可以很好地描述不同海况下随机海面的统计特征。海洋涡旋、内波、浅海地形、锋面等都可看作是通过波流交互作用,即利用自身流场改变海浪谱分布,并经过海面电磁散射模型,进而得以在SAR图像上体现。目前SAR海面图像仿真常用的电磁散射模型包括Kirchhoff散射模型、Bragg散射模型以及组合表面散射模型[13]。这些模型只考虑了1阶Bragg散射,仅适用于低频(小于L波段)SAR海面图像仿真。1997年,Romeiser和Alpers[14,15]提出了改进的组合表面模型,该模型考虑了2阶Bragg波散射的影响,从而使仿真的SAR海面图像更接近实际情况。2002年,Romeiser[16]利用该模型研究了浅海地形在SAR图像上的特征,并与声学多普勒流速剖面仪测量的浅海地形进行对比,验证了该模型用于SAR海面图像仿真的合理性;2011年,欧阳越等[17]利用该模型仿真了不同雷达参数下海洋内波图像,并同实际内波SAR图像进行对比,发现二者具有较高的一致性。但是目前,利用海面电磁散射模型对海洋涡旋SAR图像仿真的研究尚未见报道。
为此,本文提出了一种海洋涡旋SAR图像仿真方法,利用流体力学中典型的Burgers-Rott涡旋模型,建立涡旋的2维流场。利用SAR海洋成像仿真模型,仿真涡旋SAR图像。基于此方法,本文进行了气旋式涡旋与反气旋式涡旋SAR图像仿真实验,并将仿真SAR图像与ERS-2 SAR图像和ENVISAT-1 ASAR图像进行对比,从而验证该方法的有效性。
2. 涡旋SAR图像仿真方法
本文建立的涡旋SAR图像仿真方法,是在给定2维涡旋流场和风场条件下,利用SAR海洋成像模型生成随机海面的2维海浪谱,再根据2维海浪谱与SAR图像之间的调制传递函数,生成仿真涡旋SAR图像。
涡旋SAR图像仿真方法分为两步,如图1所示。首先,输入涡旋流场参数,基于涡旋动力学模型建立涡旋2维流场(于2.1节介绍)。然后,将仿真的涡旋流场和海面风场输入到SAR海洋成像仿真模型,通过设置SAR参数获得仿真涡旋SAR图像(于2.2节介绍)。
2.1 涡旋2维流场仿真
涡旋一般遵循流体力学的纳维-斯托克斯(Navier-Stokes,简写N-S)方程,根据方程中黏性力项、惯性力项以及离心力项的平衡关系,可以建立不同的涡旋模型。常见的涡旋模型包括Rankine涡旋、Oseen涡旋、Sullivan涡旋以及Burgers-Rott涡旋[18–20],其中,Rankine涡旋模型没有考虑N-S方程中的黏性力项,流体以常角速度
ω 旋转,没有径向速度,因而不能产生涡旋的辐散、辐聚和上升运动;Oseen涡旋模型仅考虑N-S方程中惯性力项的局地项及黏性力项,其轨道是一个圆形涡旋,不符合实际SAR图像中涡旋的形态;Sullivan涡旋模型和Burgers-Rott涡旋模型考虑了N-S方程中全部的黏性力项、惯性力项及离心力项,但由于Sullivan涡旋模型的轨道是一个双螺旋涡旋,Burgers-Rott涡旋模型的轨道是一个螺旋形涡旋,后者与真实SAR图像所呈现的涡旋形状更为接近,因此本文选用Burgers-Rott涡旋模型来建立海洋涡旋的流场。Burgers-Rott涡旋模型是从N-S方程求得的一个涡旋解[19,20],假定涡旋是定常和轴对称的,涡旋速度场在柱坐标系下表示为
{Vr=drdt=−α2rVθ=rdθdt=Γ02πr(1−e−αr24υ)Vz=dzdt=αz (1) 其中,
Vr,Vθ,Vz 分别是r,θ,z 方向的速度分量,α 为吸入强度,υ 为黏性系数,Γ0 是r→∞ 时的速度环量,Γ=2πrvθ 。将式(1)转化为直角坐标系,涡旋速度场可表示为
{Vx=−α2x−Γ0α8πυyVy=Γ0α8πυx−α2y (2) 其中,
Vx 为涡旋速度场在x 方向上的速度分量,Vy 是涡旋速度场在y 方向上的速度分量。通过设置参数
α、 Γ0/υ 的值,根据式(2)可以得到涡旋2维流场。通过仿真发现,α 的值会影响涡旋流场流速的大小,α 的值越大,涡旋流场流速越大,反之则越小;α 的正负影响涡旋流场的旋向,α 为正,流场顺时针旋转,α 为负,流场逆时针旋转;Γ0/υ 的值则会影响涡旋臂的曲率,Γ0/υ 的值越大,涡旋臂的曲率越大。2.2 涡旋SAR图像仿真
获得了涡旋的流场之后,下一步将进行涡旋SAR图像的仿真。本文使用SAR海洋成像仿真模型来仿真涡旋SAR图像。SAR海洋成像仿真模型主要分为波流交互作用模型、雷达后向散射模型和SAR成像模型3个部分,如图2所示。
首先,将仿真的涡旋2维流场和海面风场输入到波流交互作用模型,通过求解作用量谱平衡方程,计算给定海面流场和海面风场下被调制的海浪谱。作用量谱平衡方程如式(3)所示[21]:
∂N(x,k,t)∂t+[cg(k)+U(x,t)]∂N(x,k,t)∂x−k∂U(x,t)∂x∂N(x,k,t)∂k=S(x,k,t) (3) 其中,
N 为微尺度波作用量谱密度,x=(x,y) 为空间位置矢量,k=(kx,ky) 为波数矢量,U 为表面流场,cg 为被调制波浪的群速度,S 为源函数(风场输入、非线性波-波作用和弥散等作用之和),在本文模型中采用的源函数表达式为S(x,k,t)=μ(k)N(x,k,t)(1−N(x,k,t)N0(k)) (4) 其中,
N0 为不存在海流时平衡状态下的作用量谱密度,μ 为松弛率。作用量谱密度与海浪谱的关系为[23]
N(x,k,t)=ρω0(k)kψ(x,k,t) (5) 其中,
ω0(k)=√gk+(τ/ρ)k3 ,τ 为表面张力,ρ 为海水密度,ψ 为海浪谱。令
Q(x,k,t)=1/N(x,k,t) ,Q0(k)=1/N0(k) ,则被流场调制后的海浪谱为ψ(x,k,t)ψ0(k)=Q0(k)Q0(k)+δQ(x,k,t)=11+δQ(x,k,t)Q0(k) (6) 其中,
δQ 表示调制引起的作用量谱变化量。然后,将计算得到的海浪谱输入到雷达后向散射模型,在给定雷达频率、入射角、极化方式及雷达视向等雷达参数下,仿真涡旋SAR图像后向散射强度。本文采用的雷达后向散射模型为改进的组合表面模型,是Romeiser和Alpers等在Bragg共振散射模型基础上的改进[14,15]。该模型同时考虑了长波和中波对短波的倾斜调制和水动力调制,所以从理论和试验研究上更能表现海面微波散射的实际情况,是目前最为完善的海面微波散射模型之一。该模型是基于2维海面坡度,通过傅里叶变换对后向散射截面进行泰勒级数展开,并对后向散射截面进行时间和空间上的平均。由于1阶项平均后为0,因此得到2阶Bragg散射后的海面归一化后向散射系数为[14,22]
⟨σ⟩=σ(0)+⟨σ(2)⟩=σ|s=0+∬(∂2∧∨σ∂∧sp∂∨sp|∧s=0+∂2∧∨σ∂∨sp∂∧sp|∧s=0)⋅k2pψ(k)d2k+∬(∂2∧∨σ∂∧sn∂∨sn|∧s=0+∂2∧∨σ∂∨sn∂∧sn|∧s=0)⋅k2nψ(k)d2k+∬(∂2∧∨σ∂∧sp∂∨sn|∧s=0+∂2∧∨σ∂∨sn∂∧sp|∧s=0+∂2∨∧σ∂∨sp∂∧sn|∧s=0+∂2∨∧σ∂∨sn∂∧sp|∧s=0)⋅kpknψ(k)d2k (7) 其中,
σ(0) 为平静海面的归一化后向散射系数;⟨σ(2)⟩ 表示表面坡度引起的2阶Bragg散射之和;符号⟨⋅⟩ 表示统计平均;s=(sp,sn) 为海面坡度;kp ,kn 分别为平行和垂直于雷达视向的Bragg波波数分量;ψ(k) 为海浪波数谱;符号∧ 和∨ 分别表示σ 对波数k 的傅里叶变换及其共轭;∧∧ 和∨∨ 表示σ 对组合波数k1+k2 的傅里叶变换及其共轭;∧∨ 和∨∧ 表示σ 对组合波数k1−k2 的傅里叶变换及其共轭。上述过程中,利用海浪谱与雷达后向散射模型得到仿真的海面归一化后向散射系数,但这是一个实孔径雷达成像过程,SAR图像仿真还需考虑海面运动的影响。当目标存在沿雷达视线方向的径向速度时,将在方位向上产生偏移
Δx :Δx=−RV vr=Rλ2V fD (8) 其中,
R 是雷达至目标的距离,V 是平台飞行速度,λ 是雷达波长,fD=−2vrλ 是目标速度导致的Doppler谱中心偏移。对于海面而言,由于其各点速度不同,在方位向上偏移量不同,导致SAR海面图像产生压缩或拉伸的现象,即速度聚束效应[24]。此外,分辨单元内不同散射点速度的分布方差将造成回波Doppler谱展宽,并导致分辨率下降。SAR成像模型通过计算每个分辨单元的平均Doppler谱中心和方差引入海面运动对SAR成像造成的影响。这里采用Romeiser和Thompson[25]给出的双高斯形Doppler谱模型计算Doppler谱中心和方差,该模型将海面回波Doppler谱分成朝向雷达和远离雷达两个传播方向的Bragg波Doppler谱的叠加,每个Doppler谱分量为高斯形,其具体表达式为
W(fD)=⟨σ+⟩√2πγ2D+e−(fD−⟨fD+⟩σ)2/γ2D++⟨σ−⟩√2πγ2D−e−(fD−⟨fD−⟩σ)2/γ2D− (9) 其中,
± 表示远离雷达方向和朝向雷达方向的两组Bragg波分量,⟨fD±⟩σ 表示经过归一化后向散射系数σ 加权的平均Doppler中心;γD± 表示Doppler谱的方差。⟨fD±⟩σ 和γD± 的具体计算过程可以参考文献[25],这里不再赘述。另外,仿真的SAR图像还需考虑噪声的影响,本文涡旋SAR图像仿真过程中,仅考虑热噪声对仿真SAR图像信噪比的影响。信噪比由噪声等效后向散射系数以及海面归一化后向散射系数所决定:
SNR(dB)=⟨σ⟩−NEσ0 (10) 其中,海面归一化后向散射系数
⟨σ⟩ 由入射角、雷达频率、极化方式、海面风速等参数所决定,NEσ0 为噪声等效后向散射系数,由系统硬件参数所决定。因此,SAR成像模型根据给定的仿真输入参数计算信噪比,从而得到具有统计特性的仿真涡旋SAR图像。3. 涡旋SAR图像仿真实验
根据涡旋旋转方向的不同,可将涡旋分为气旋式涡旋与反气旋式涡旋[26]。气旋式涡旋在北半球逆时针旋转,在南半球顺时针旋转;反气旋式涡旋在北半球顺时针旋转,在南半球逆时针旋转。不同旋转方向的涡旋将产生不同的涡旋流场,从而在SAR图像中呈现不同的涡旋特征。下面,本文分别针对气旋式涡旋与反气旋式涡旋进行仿真实验。
3.1 气旋式涡旋仿真实验
图3是一幅ERS-2 SAR图像,图像获取时间为2009.08.19, 02:23:50 UTC,获取地点为中国东海海域。图中方框1处为一个气旋式涡旋,旋转方向为逆时针。为了便于对比仿真SAR图像与真实SAR图像,将方框1处的涡旋截取出来,截取图像尺寸为18 km×24 km,如图4所示。ERS-2 SAR图像的具体雷达参数如表1所示。
表 1 ERS-2 SAR参数Table 1. SAR parameters of ERS-2参数 数值 极化方式 VV 波段 C 入射角 23.0° 平台高度 780 km 平台速度 7500 m/s 从欧洲中期天气预报中心(Europe Centre for Medium-Range Weather Forecasts, ECMWF)获取2009.08.19, 03:00:00时刻的风场再分析资料,分辨率为0.125°×0.125°。根据数据显示,涡旋区域附近的风速为1.4 m/s,风向为257.9°。从全球海洋数据同化系统(Global Ocean Data Assimilation System, GODAS)获取相同位置的5日平均流场再分析资料,分辨率为(1/3)°×1°。根据数据显示,涡旋区域附近的流速为0.61 m/s。因此,设置参数
α 为–0.003486,流场大小设置为18 km×24 km,空间分辨率为100 m,雷达参数设置为表1中ERS-2SAR参数。图5(a)、图5(b)分别是该涡旋的仿真SAR图像与获取的真实SAR图像,仿真时设定的雷达参数、海面风场条件与真实SAR图像获取条件完全一致。对比图5(a)、图5(b)两图发现,仿真SAR图像与真实SAR图像中的涡旋臂形状几乎一致,涡旋臂的亮暗特征也基本吻合。从逆时针方向看,涡旋臂由外到内的亮暗特征均为亮-暗-亮,这种亮暗特征的变化是由雷达后向散射引起的布拉格波谱密度变化导致的[7]。这初步验证了仿真方法的正确性。
为了进一步验证仿真方法的正确性,定量地描述仿真SAR图像与真实SAR图像的中涡旋的相似程度,采用文献[9]中基于对数螺旋线边缘拟合的SAR图像涡旋信息提取方法,提取仿真SAR图像和真实SAR图像中涡旋的中心位置、直径及边缘长度,并加以比较。拟合及提取结果如图6所示,红色加号表示涡旋中心位置,黄色箭头表示涡旋直径,蓝色曲线表示涡旋边缘,具体数值如表2所示。
表 2 涡旋信息提取结果Table 2. Results of eddy information extractionSAR图像 涡旋中心位置 涡旋直径 涡旋边缘长度 仿真SAR图像 (116,75) 18.9 km 35.7 km 真实SAR图像 (113,71) 18.7 km 35.4 km 绝对/相对误差 (3,4)/— 0.2 km/0.011 0.3 km/0.008 对比仿真SAR图像与真实SAR图像的涡旋信息提取结果,可以发现两幅图像中涡旋的中心位置较为一致,方位向和距离向上仅相差3~4个像素点,涡旋直径及边缘长度的相对误差均不超过0.011,证明本文提出的基于Burgers-Rott涡旋模型的涡旋SAR图像仿真方法能够实现气旋式涡旋的SAR图像仿真,并且仿真SAR图像与真实SAR图像能够较好地吻合。
3.2 反气旋式涡旋仿真实验
3.1节对气旋式涡旋进行了仿真实验,本节将针对反气旋式涡旋进行仿真实验。图7是一幅ENVISAT-1 ASAR图像,图像获取时间为2010.06.11, 01:51:48 UTC,获取地点在吕宋海峡。图中方框2处为一个反气旋式涡旋,旋转方向为顺时针。将方框2处的涡旋截取出来,截取图像尺寸为24 km×24 km,如图8所示。ENVISAT-1 ASAR图像的具体雷达参数如表3所示。
表 3 ENVISAT-1 ASAR参数Table 3. ASAR parameters of ENVISAT-1参数 数值 极化方式 HH 波段 C 入射角 26.7° 平台高度 800 km 平台速度 7455 m/s 从ECMWF获取2010.06.11, 03:00:00时刻的风场再分析资料,分辨率为0.125°×0.125°。根据数据显示,涡旋区域附近的风速为2.1 m/s,风向为45°。从GODAS获取相同位置的5日平均流场再分析资料,分辨率为(1/3)°×1°。根据数据显示,涡旋区域附近的流速为0.23 m/s。因此,设置参数
α 为0.000657,流场大小设置为24 km×24 km,空间分辨率为100 m,雷达参数设置为表3中ENVISAT-1 ASAR参数。图9(a)、图9(b)分别是该涡旋的仿真SAR图像与真实SAR图像,仿真时设定的雷达参数、海面风场条件与真实SAR图像完全一致。对比图9(a)、图9(b)两图发现,仿真SAR图像与真实SAR图像中的涡旋形状基本一致,涡旋臂的亮暗特征也较为吻合。从顺时针方向看,涡旋臂从外到内均呈现为由暗到亮的特征。该结果与Lyzenga等人[6]研究结果一致,初步验证了仿真方法的正确性。
为了定量地描述仿真SAR图像与真实SAR图像的中涡旋的相似性,同样采用3.1节中的分析方法,得到涡旋拟合结果如图10所示,提取的涡旋信息如表4所示。
表 4 涡旋信息提取结果Table 4. Results of eddy information extractionSAR图像 涡旋中心位置 涡旋直径 涡旋边缘尺寸 仿真SAR图像 (144,78) 24.0 km 49.4 km 真实SAR图像 (147,81) 23.9 km 49.7 km 绝对/相对误差 (3,3)/— 0.1 km/0.004 0.3 km/0.006 对比仿真SAR图像与真实SAR图像的涡旋信息提取结果,可以发现两幅图像中涡旋的中心位置较为接近,方位向和距离向上均相差3个像素点,涡旋直径及边缘尺寸相对误差均不超过0.006,这进一步验证了仿真方法的正确性,说明本文提出的基于Burgers-Rott涡旋模型的涡旋SAR图像仿真方法能够实现反气旋式涡旋的SAR图像仿真。
4. 总结
本文基于Burgers-Rott涡旋模型,提出了一种涡旋SAR图像仿真方法,并分别针对气旋式涡旋与反气旋式涡旋进行了仿真实验。通过将仿真SAR图像与真实SAR图像对比验证发现,本文提出的涡旋SAR图像仿真方法能够实现气旋式涡旋和反气旋式涡旋的SAR图像仿真,且仿真SAR图像与真实SAR图像能够较好地吻合。
通过涡旋SAR图像仿真实验发现,无论气旋式涡旋还是反气旋式涡旋,其涡旋臂在SAR图像中都会呈现亮暗交替变化的特征。其中,气旋式涡旋臂呈现两个亮暗交替周期,即亮-暗-亮;反气旋式涡旋臂呈现一个亮暗交替周期,即暗-亮。这是由于这两个涡旋臂的曲率不同,气旋式涡旋臂曲率较大,亮暗交替周期较多,反气旋式涡旋臂曲率较小,亮暗交替周期较少。
由于涡旋在SAR成像时会受到各种海洋环境因素的影响,通过真实SAR图像难以完全解译涡旋的特征。本文提出的SAR图像仿真方法能够弥补这种不足,可以清晰地获取涡旋的尺度、亮暗等特征,这为海洋涡旋特征的解译和提取提供了便利。
-
表 1 简缩极化SAR全极化(FP)信息重建方法小结
Table 1. Summary of Fully Polarimetric (FP) information reconstruction methods for CP SAR
文献 方法特点 适用模式 应用领域 文献[8] 假设反射对称性成立,提出SHV与SHH和SVV的关系:⟨|SHV|2⟩⟨|SHH|2⟩+⟨|SVV|2⟩=(1−|ρHH-VV|)N 不限 不限 文献[19] 考虑到完全随机体散射的情况,提出应迭代地修改N的值:
N=⟨|SHH−SVV|2⟩⟨|SHV|2⟩不限 不限 文献[20] 假设反射对称性不成立,用改进的四分量分解方法,修改SHV与SHH和SVV的关系⟨|SHV|2⟩⟨|SHH|2⟩+⟨|SVV|2⟩=(1−|ρHH-VV|)4(Pv+2PhPv) 不限 海面船舶检测 文献[21,22] 针对海面目标检测,提出用N的平均值ˉN进行重建,并给出ˉN的估计模型ˉN=b1+b2exp(−θb3) 不限 海面目标检测 文献[23] 针对海面风速反演,提出新的参数N估计模型:N=P1θ4+P2θ3+P3θ2+P4θ+P5 不限 海面风速反演 文献[24] 针对海面溢油检测,提出新的参数N估计模型
N=a×Rb;R=⟨|SHV|2⟩⟨|SHH|2⟩+⟨|SVV|2⟩不限 海面溢油检测 文献[25] 基于Stokes参数,提出两个直接估计交叉极化项的方法⟨|SHV|2⟩=(1−DoP)g02; ⟨|SHV|2⟩=λ2g02λ1 HP模式 海冰监测 文献[26] 根据Freeman-Durden分解的体散射模型提出直接估计交叉极化项的方法Pv=H×(λ1+λ2)=8×⟨|SHV|2⟩ HP模式 不限 文献[27] 提出基于Wishart-Bayesian正则化的重建方法,不依赖参数N的估计 不限 不限 表 2 简缩极化SAR极化分解方法小结
Table 2. Summary of the polarimetric decomposition methods for CP SAR
类型 优点 缺点 基于Stokes参数 简单易行,便于理解 存在体散射过估计 H/α分解 便于与全极化SAR进行直接对比 只有DCP模式的α角能指示不同散射机制,且与全极化之间存在近似余角的关系;存在散射熵过估计 基于模型的分解 便于与全极化SAR进行直接对比 分解结果受模型假设条件影响;存在体散射过估计;需迭代求解模型结果,计算较为复杂 表 3 基于简缩极化SAR特征的农作物生物物理学参数反演研究小结
Table 3. Summary of crop biophysical parameter inversion based on CP SAR features
文献 数据 相关植被参数 相关简缩极化特征 文献[57] 12景ESAR L波段仿真HP模式数据 小麦湿生物量 δ 玉米湿生物量 δ, μC 冬油菜高度 m 文献[58] 5景RADARSAT-2仿真HP模式数据 油菜生物量 g3 油菜株高 μC 油菜LAI μC 文献[59] 2景RISAT-1真实HP模式数据 棉花株高 m-χ/m-δ分解体散射分量 棉花株龄 σRH,σRV,m-χ/m-δ分解体散射分量 棉花生物量 文献[60] 6景RADARSAT-2仿真HP模式数据 玉米生物量 m-δ分解VSR 文献[61] 5景RADARSAT-2仿真HP模式数据 水稻株高 g0,σRL,σRV,m-χ分解 水稻冠层含水量 g0,σRV,σRH,σRR,σRL 水稻穗生物量 σRH,σRR,m-χ/m-δ分解 水稻LAI g0,g1 文献[62] 1景RADARSAT-2仿真HP模式数据 冬小麦LAI H,PL,m-δ分解偶次散射分量、反熵A(即m) 表 4 简缩极化SAR船舶检测算法小结
Table 4. Summary of the ship detection methods of CP SAR
文献 方法 相关特征 性能 文献[71] 视觉注意机制的特征增强、lognormal-CFAR检测 δ, m-δ分解体散射分量 优于SPAN-CFAR或RH-CFAR 文献[72] CFAR预检测、滤波、SVM分类器 δ, χ, RHRV通道相关系数、m-χ
分解体散射分量优于SPAN-CFAR、全极化PWF 文献[73] U-Net网络 RH, RV通道强度 优于HH单极化、HH/HV双极化;优于CFAR和Faster RCNN网络 文献[74] 广义GAMMA-CFAR检测 HESA, LESA 优于SPAN-CFAR、全极化SPAN-CFAR, H-CFAR 文献[75] Notch滤波、广义GAMMA- CFAR检测 SRH,SRV 优于HH/HV双极化 文献[76] ReliefF特征筛选、加权SVM检测、基于m-χ分解的虚警滤除 H/α分解、m-χ分解表面散射分量 优于SVM检测器、与全极化相当 文献[77] – Phase Factor 优于不同分布下的CFAR检测器 -
[1] LEE J S and POTTIER E. Polarimetric Radar Imaging: From Basics to Applications[M]. New York: CRC Press, 2009: 43–44. [2] LARRAÑAGA A and ÁLVAREZ-MOZOS J. On the added value of quad-pol data in a multi-temporal crop classification framework based on RADARSAT-2 imagery[J]. Remote Sensing, 2016, 8(4): 335. doi: 10.3390/rs8040335 [3] WU Fu, WANG Chao, ZHANG Hong, et al. Rice crop monitoring in South China with RADARSAT-2 quad-polarization SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(2): 196–200. doi: 10.1109/LGRS.2010.2055830 [4] YAJIMA Y, YAMAGUCHI Y, SATO R, et al. POLSAR image analysis of wetlands using a modified four-component scattering power decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6): 1667–1673. doi: 10.1109/tgrs.2008.916326 [5] ZHANG Biao, PERRIE W, LI Xiaofeng, et al. Mapping sea surface oil slicks using RADARSAT‐2 quad‐polarization SAR image[J]. Geophysical Research Letters, 2011, 38(10): L10602. doi: 10.1029/2011gl047013 [6] NUNZIATA F, MIGLIACCIO M, and BROWN C E. Reflection symmetry for polarimetric observation of man-made metallic targets at sea[J]. IEEE Journal of Oceanic Engineering, 2012, 37(3): 384–394. doi: 10.1109/JOE.2012.2198931 [7] 洪文. 基于混合极化架构的极化SAR: 原理与应用(中英文)[J]. 雷达学报, 2016, 5(6): 559–595. doi: 10.12000/JR16074HONG Wen. Hybrid-polarity architecture based polarimetric SAR: Principles and applications[J]. Journal of Radars, 2016, 5(6): 559–595. doi: 10.12000/JR16074 [8] SOUYRIS J C, IMBO P, FJORTOFT R, et al. Compact polarimetry based on symmetry properties of geophysical media: The π/4 mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 634–646. doi: 10.1109/TGRS.2004.842486 [9] STACY N and PREISS M. Compact polarimetric analysis of X-band SAR data[C]. The 6th European Conference on Synthetic Aperture Radar, Dresden, Germany, 2006. [10] RANEY R K. Hybrid-polarity SAR architecture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3397–3404. doi: 10.1109/TGRS.2007.895883 [11] RANEY R K, CAHILL J T S, PATTERSON G W, et al. The m-chi decomposition of hybrid dual-polarimetric radar data with application to lunar craters[J]. Journal of Geophysical Research: Planets, 2012, 117(E12): E00H21. doi: 10.1029/2011je003986 [12] RANEY R K, SPUDIS P D, BUSSEY B, et al. The lunar mini-RF radars: Hybrid polarimetric architecture and initial results[J]. Proceedings of the IEEE, 2011, 99(5): 808–823. doi: 10.1109/JPROC.2010.2084970 [13] MISRA T and KUMAR A S K. Scatterometer and RISAT-1: ISRO’S contribution to radar remote sensing[C]. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 2015: 4220–4223. doi: 10.1109/IGARSS.2015.7326757. [14] YOKOTA Y, NAKAMURA S, ENDO J, et al. Evaluation of compact polarimetry and along track interferometry as experimental mode of PALSAR-2[C]. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 2015: 4125–4128. doi: 10.1109/IGARSS.2015.7326733. [15] SPACEX. RADARSAT constellation mission[EB/OL]. https://www.spacex.com/sites/spacex/files/radarsat_constellation_mission_press_kit.pdf, 2019. [16] RANEY R K. DESDynI adopts hybrid polarity SAR architecture[C]. 2009 IEEE Radar Conference, Pasadena, US, 2009: 1–4. doi: 10.1109/RADAR.2009.4977046. [17] PUTREVU D, DAS A, VACHHANI J G, et al. Chandrayaan-2 dual-frequency SAR: Further investigation into lunar water and regolith[J]. Advances in Space Research, 2016, 57(2): 627–646. doi: 10.1016/J.ASR.2015.10.029 [18] 张红, 谢镭, 王超, 等. 简缩极化SAR数据信息提取与应用[J]. 中国图象图形学报, 2013, 18(9): 1065–1073. doi: 10.11834/jig.20130902ZHANG Hong, XIE Lei, WANG Chao, et al. Information extraction and application of compact polarimetric SAR data[J]. Journal of Image and Graphics, 2013, 18(9): 1065–1073. doi: 10.11834/jig.20130902 [19] NORD M E, AINSWORTH T L, LEE J S, et al. Comparison of compact polarimetric synthetic aperture radar modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1): 174–188. doi: 10.1109/TGRS.2008.2000925 [20] YIN Junjun, YANG Jian, and ZHANG Xinzheng. On the ship detection performance with compact polarimetry[C]. 2011 IEEE RadarCon (RADAR), Kansas City, USA, 2011: 675–680. doi: 10.1109/RADAR.2011.5960623. [21] DENBINA M and COLLINS M J. Iceberg detection using compact polarimetric synthetic aperture radar[J]. Atmosphere-Ocean, 2012, 50(4): 437–446. doi: 10.1080/07055900.2012.733307 [22] COLLINS M J, DENBINA M, and ATTEIA G. On the reconstruction of quad-pol SAR data from compact polarimetry data for ocean target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 591–600. doi: 10.1109/TGRS.2012.2199760 [23] LI Haiyan, WU Jin, PERRIE W, et al. Wind speed retrieval from hybrid-pol compact polarization synthetic aperture radar images[J]. IEEE Journal of Oceanic Engineering, 2018, 43(3): 713–724. doi: 10.1109/JOE.2017.2722225 [24] LI Yu, ZHANG Yuanzhi, CHEN Jie, et al. Improved compact polarimetric SAR quad-pol reconstruction algorithm for oil spill detection[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6): 1139–1142. doi: 10.1109/lgrs.2013.2288336 [25] ESPESETH M M, BREKKE C, and ANFINSEN S N. Hybrid-polarity and reconstruction methods for sea ice with L-and C-band SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 467–471. doi: 10.1109/LGRS.2016.2519824 [26] KUMAR A and PANIGRAHI R K. Entropy based reconstruction technique for analysis of hybrid-polarimetric SAR data[J]. IET Radar, Sonar & Navigation, 2019, 13(4): 620–626. doi: 10.1049/iet-rsn.2018.5338 [27] YUE Dongxiao, XU Feng, and JIN Yaqiu. Wishart-Bayesian reconstruction of Quad-Pol from Compact-Pol SAR image[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1623–1627. doi: 10.1109/LGRS.2017.2727280 [28] REIGBER A, NEUMANN M, FERRO-FAMIL L, et al. Multi-baseline coherence optimisation in partial and compact polarimetric modes[C]. 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, USA, 2008: 597–600. doi: 10.1109/IGARSS.2008.4779063. [29] RANEY R K. Comparing compact and quadrature polarimetric SAR performance[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6): 861–864. doi: 10.1109/lgrs.2016.2550863 [30] RANEY R K. Hybrid dual-polarization synthetic aperture radar[J]. Remote Sensing, 2019, 11(13): 1521. doi: 10.3390/rs11131521 [31] RANEY R K. Dual-polarized SAR and stokes parameters[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3): 317–319. doi: 10.1109/LGRS.2006.871746 [32] CHARBONNEAU F J, BRISCO B, RANEY R K, et al. Compact polarimetry: Multi-thematic evaluation[C]. The 4th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry (PolInSAR), Frascati, Italy, 2009, 26–30. [33] RANEY R K, CAHILL J T S, PATTERSON G W, et al. The m-chi decomposition of hybrid dual-polarimetric radar data[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich: Germany, 2012, 5093–5096. doi: 10.1109/IGARSS.2012.6352465. [34] CLOUDE S R, GOODENOUGH D G, and CHEN H. Compact decomposition theory[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1): 28–32. doi: 10.1109/LGRS.2011.2158983 [35] SABRY R and VACHON P W. A unified framework for general compact and quad polarimetric SAR data and imagery analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 582–602. doi: 10.1109/TGRS.2013.2242479 [36] GUO R, LIU Y B, WU Y H, et al. Applying H/α decomposition to compact polarimetric SAR[J]. IET Radar, Sonar & Navigation, 2012, 6(2): 61–70. doi: 10.1049/iet-rsn.2011.0007 [37] ZHANG Hong, XIE Lei, WANG Chao, et al. Investigation of the capability of H-α decomposition of compact polarimetric SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4): 868–872. doi: 10.1109/LGRS.2013.2280456 [38] 谢镭. 多模式极化SAR图像分解与分类方法及应用研究[D]. [博士论文], 中国科学院大学, 2016: 46–59.XIE Lei. Researches on methods and applications of image decomposition and classification for multi-mode polarimetric SAR[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2016: 46–59. [39] GUO Rui, HE Wei, ZHANG Shuangxi, et al. Analysis of three-component decomposition to compact polarimetric synthetic aperture radar[J]. IET Radar, Sonar & Navigation, 2014, 8(6): 685–691. doi: 10.1049/iet-rsn.2013.0114 [40] 刘萌, 张红, 王超. 基于简缩极化数据的三分量分解模型[J]. 电波科学学报, 2012, 27(2): 365–371.LIU Meng, ZHANG Hong, and WANG Chao. Three-component scattering model for compact polarimetric SAR data[J]. Chinese Journal of Radio Science, 2012, 27(2): 365–371. [41] HAN Kuoye, JIANG Mian, WANG Mingjiang, et al. Compact polarimetric SAR interferometry target decomposition with the freeman-durden method[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(8): 2847–2861. doi: 10.1109/JSTARS.2018.2842125 [42] KUMAR A, DAS A, and PANIGRAHI R K. Hybrid-pol based three-component scattering model for analysis of RISAT data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12): 5155–5162. doi: 10.1109/JSTARS.2017.2768378 [43] AINSWORTH T L, KELLY J P, and LEE J S. Classification comparisons between dual-pol, compact polarimetric and quad-pol SAR imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(5): 464–471. doi: 10.1016/j.isprsjprs.2008.12.008 [44] KUMAR V, RAO Y S, BHATTACHARYA A, et al. Classification assessment of real versus simulated compact and quad-pol modes of ALOS-2[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(9): 1497–1501. doi: 10.1109/LGRS.2019.2899268 [45] CHARBONNEAU F J, BRISCO B, RANEY R K, et al. Compact polarimetry overview and applications assessment[J]. Canadian Journal of Remote Sensing, 2010, 36(S2): S298–S315. doi: 10.5589/m10-062 [46] OHKI M and SHIMADA M. Large-area land use and land cover classification with quad, compact, and dual polarization SAR data by PALSAR-2[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5550–5557. doi: 10.1109/TGRS.2018.2819694 [47] BRISCO B, LI K, TEDFORD B, et al. Compact polarimetry assessment for rice and wetland mapping[J]. International Journal of Remote Sensing, 2013, 34(6): 1949–1964. doi: 10.1080/01431161.2012.730156 [48] XU Lu, ZHANG Hong, and WANG Chao. Comparative analysis of classification results between compact and fully polarimetric SAR images in random forest classifier[C]. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth, USA, 2017: 3929–3932. doi: 10.1109/IGARSS.2017.8127859. [49] XU Lu, ZHANG Hong, WANG Chao, et al. Corn mapping uisng multi-temporal fully and compact SAR data[C]. 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 2017. doi: 10.1109/BIGSARDATA.2017.8124925. [50] MAHDIANPARI M, MOHAMMADIMANESH F, MCNAIRN H, et al. Mid-season crop classification using dual-, compact-, and full-polarization in preparation for the Radarsat Constellation Mission (RCM)[J]. Remote Sensing, 2019, 11(13): 1582. doi: 10.3390/rs11131582 [51] XIE Lei, ZHANG Hong, WU Fan, et al. Capability of rice mapping using hybrid polarimetric SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3812–3822. doi: 10.1109/JSTARS.2014.2387214 [52] XIE Lei, ZHANG Hong, LI Hongzhong, et al. A unified framework for crop classification in southern China using fully polarimetric, dual polarimetric, and compact polarimetric SAR data[J]. International Journal of Remote Sensing, 2015, 36(14): 3798–3818. doi: 10.1080/01431161.2015.1070319 [53] UPPALA D, KOTHAPALLI R V, POLOJU S, et al. Rice crop discrimination using single date RISAT1 hybrid (RH, RV) polarimetric data[J]. Photogrammetric Engineering & Remote Sensing, 2015, 81(7): 557–563. doi: 10.14358/PERS.81.7.557 [54] UPPALA D, VENKATA R K, POLOJU S, et al. Discrimination of maize crop with hybrid polarimetric RISAT1 data[J]. International Journal of Remote Sensing, 2016, 37(11): 2641–2652. doi: 10.1080/01431161.2016.1184353 [55] 国贤玉, 李坤, 王志勇, 等. 基于SVM+SFS策略的多时相紧致极化SAR水稻精细分类[J]. 国土资源遥感, 2018, 30(4): 20–27. doi: 10.6046/gtzyyg.2018.04.04GUO Xianyu, LI Kun, WANG Zhiyong, et al. Fine classification of rice with multi-temporal compact polarimetric SAR based on SVM +SFS strategy[J]. Remote Sensing for Land &Resources, 2018, 30(4): 20–27. doi: 10.6046/gtzyyg.2018.04.04 [56] CHIRAKKAL S, HALDAR D, and MISRA A. Evaluation of hybrid polarimetric decomposition techniques for winter crop discrimination[J]. Progress in Electromagnetics Research M, 2017, 55: 73–84. doi: 10.2528/PIERM17011603 [57] BALLESTER-BERMAN J D, and LOPEZ-SANCHEZ J M. Time series of hybrid-polarity parameters over agricultural crops[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1): 139–143. doi: 10.1109/LGRS.2011.2162312 [58] ZHANG Wangfei, LI Zengyuan, CHEN Erxue, et al. Compact polarimetric response of rape (Brassica napus L.) at C-band: Analysis and growth parameters inversion[J]. Remote Sensing, 2017, 9(6): 591. doi: 10.3390/rs9060591 [59] DAVE V A, HALDAR D, DAVE R, et al. Cotton crop biophysical parameter study using hybrid/compact polarimetric RISAT-1 SAR data[J]. Progress in Electromagnetics Research M, 2017, 57: 185–196. doi: 10.2528/PIERM16121903 [60] HOMAYOUNI S, MCNAIRN H, HOSSEINI M, et al. Quad and compact multitemporal C-band PolSAR observations for crop characterization and monitoring[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 74: 78–87. doi: 10.1016/j.jag.2018.09.009 [61] GUO Xianyu, LI Kun, SHAO Yun, et al. Inversion of rice biophysical parameters using simulated compact polarimetric SAR C-band data[J]. Sensors, 2018, 18(7): 2271. doi: 10.3390/s18072271 [62] LIU Changan, CHEN Zhongxin, HAO Pengyu, et al. LAI Retrieval of winter wheat using simulated compact SAR data through GA-PLS modeling[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 2018: 3840–3843. doi: 10.1109/IGARSS.2018.8518005. [63] YANG Zhi, LI Kun, LIU Long, et al. Rice growth monitoring using simulated compact polarimetric C band SAR[J]. Radio Science, 2014, 49(12): 1300–1315. doi: 10.1002/2014RS005498 [64] YANG Zhi, SHAO Yun, LI Kun, et al. An improved scheme for rice phenology estimation based on time-series multispectral HJ-1A/B and polarimetric RADARSAT-2 data[J]. Remote Sensing of Environment, 2017, 195: 184–201. doi: 10.1016/j.rse.2017.04.016 [65] LOPEZ-SANCHEZ J M, VICENTE-GUIJALBA F, BALLESTER-BERMAN J D, et al. Polarimetric response of rice fields at C-band: Analysis and phenology retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2977–2993. doi: 10.1109/TGRS.2013.2268319 [66] IZUMI Y, DEMIRCI S, BIN BAHARUDDIN M, et al. Analysis of dual-and full-circular polarimetric SAR modes for rice phenology monitoring: An experimental investigation through ground-based measurements[J]. Applied Sciences, 2017, 7(4): 368. doi: 10.3390/app7040368 [67] ATTEIA G and COLLINS M J. Ship detection performance assessment for simulated RCM SAR data[C]. 2014 IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, Canada, 2014: 553–556. doi: 10.1109/IGARSS.2014.6946482. [68] SHIRVANY R, CHABERT M, and TOURNERET J Y. Ship and oil-spill detection using the degree of polarization in linear and hybrid/compact dual-pol SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(3): 885–892. doi: 10.1109/JSTARS.2012.2182760 [69] YIN Junjun and YANG Jian. Ship detection by using the M-Chi and M-Delta decompositions[C]. 2014 IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, Canada, 2014: 2738–2741. doi: 10.1109/IGARSS.2014.6947042. [70] 曹成会, 张杰, 张晰, 等. C波段紧缩极化合成孔径雷达船只目标检测性能分析[J]. 中国海洋大学学报, 2017, 47(2): 85–93. doi: 10.16441/j.cnki.hdxb.20160347CAO Chenghui, ZHANG Jie, ZHANG Xi, et al. The analysis of ship target detection performance with C band compact polarimetric SAR[J]. Periodical of Ocean University of China, 2017, 47(2): 85–93. doi: 10.16441/j.cnki.hdxb.20160347 [71] XU Lu, ZHANG Hong, WANG Chao, et al. Compact polarimetric SAR ship detection with m-δ decomposition using visual attention model[J]. Remote Sensing, 2016, 8(9): 751. doi: 10.3390/rs8090751 [72] FAN Qiancong, CHEN Feng, CHENG Ming, et al. A modified framework for ship detection from compact polarization SAR image[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 2018: 3539–3542. doi: 10.1109/IGARSS.2018.8518763. [73] FAN Qiancong, CHEN Feng, CHENG Ming, et al. Ship detection using a fully convolutional network with compact polarimetric sar images[J]. Remote Sensing, 2019, 11(18): 2171. doi: 10.3390/rs11182171 [74] GAO Gui, GAO Sheng, HE Juan, et al. Adaptive ship detection in hybrid-polarimetric SAR images based on the power-entropy decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5394–5407. doi: 10.1109/TGRS.2018.2815592 [75] GAO Gui, GAO Sheng, HE Juan, et al. Ship detection using compact polarimetric SAR based on the notch filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5380–5393. doi: 10.1109/TGRS.2018.2815582 [76] JI Kefeng, LENG Xiangguang, WANG Haibo, et al. Ship detection using weighted SVM and M-CHI decomposition in compact polarimetric SAR imagery[C]. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, USA, 2017: 890–893. doi: 10.1109/IGARSS.2017.8127095. [77] CAO Chenghui, ZHANG Jie, MENG Junmei, et al. Analysis of ship detection performance with full-, compact-and dual-polarimetric SAR[J]. Remote Sensing, 2019, 11(18): 2160. doi: 10.3390/rs11182160 [78] ZHANG Biao, LI Xiaofeng, PERRIE W, et al. Compact polarimetric synthetic aperture radar for marine oil platform and slick detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(3): 1407–1423. doi: 10.1109/TGRS.2016.2623809 [79] LI Haiyan, PERRIE W, HE Yijun, et al. Target detection on the ocean with the relative phase of compact polarimetry SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3299–3305. doi: 10.1109/TGRS.2012.2224119 [80] LI Haiyan, PERRIE W, HE Yijun, et al. Analysis of the polarimetric SAR scattering properties of oil-covered waters[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3751–3759. doi: 10.1109/JSTARS.2014.2348173 [81] KUMAR L J V, KISHORE K J, and RAO K P. Decomposition methods for detection of oil spills based on RISAT-1 SAR images[J]. International Journal of Remote Sensing & Geoscience, 2014, 3(4): 2319–3484. [82] MIGLIACCIO M, NUNZIATA F, and BUONO A. SAR polarimetry for sea oil slick observation[J]. International Journal of Remote Sensing, 2015, 36(12): 3243–3273. doi: 10.1080/01431161.2015.1057301 [83] YIN Junjun, YANG Jian, ZHOU Zhengshu, et al. The extended Bragg scattering model-based method for ship and oil-spill observation using compact polarimetric SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3760–3772. doi: 10.1109/JSTARS.2014.2359141 [84] NUNZIATA F, MIGLIACCIO M, and LI Xiaofeng. Sea oil slick observation using hybrid-polarity SAR architecture[J]. IEEE Journal of Oceanic Engineering, 2015, 40(2): 426–440. doi: 10.1109/JOE.2014.2329424 [85] BUONO A, NUNZIATA F, MIGLIACCIO M, et al. Polarimetric analysis of compact-polarimetry SAR architectures for sea oil slick observation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 5862–5874. doi: 10.1109/TGRS.2016.2574561 [86] ZHANG Yuanzhi, LI Yu, LIANG X S, et al. Comparison of oil spill classifications using fully and compact polarimetric SAR images[J]. Applied Sciences, 2017, 7(2): 193. doi: 10.3390/app7020193 [87] 谢广奇, 杨帅, 陈启浩, 等. 简缩极化特征值分析的溢油检测[J]. 遥感学报, 2019, 23(2): 303–312. doi: 10.11834/jrs.20197260XIE Guangqi, YANG Shuai, CHEN Qihao, et al. Oil spill detection based on compact polarimetric eigenvalue decomposition[J]. Journal of Remote Sensing, 2019, 23(2): 303–312. doi: 10.11834/jrs.20197260 [88] DABBOOR M, SINGHA S, TOPOUZELIS K, et al. Oil spill detection using simulated radarsat constellation mission compact polarimetric SAR data[C]. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, USA, 2017: 4582–4585. doi: 10.1109/IGARSS.2017.8128021. [89] DABBOOR M, SINGHA S, MONTPETIT B, et al. Assessment of simulated compact polarimetry of the RCM medium resolution SAR modes for oil spill detection[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 2018: 2416–2419. doi: 10.1109/IGARSS.2018.8517756. [90] DABBOOR M, SINGHA S, MONTPETIT B, et al. Pre-launch assessment of RADARSAT constellation mission medium resolution modes for sea oil slicks and lookalike discrimination[J]. Canadian Journal of Remote Sensing, 2019, 45(3/4): 530–549. doi: 10.1080/07038992.2019.1659722 [91] LI Haiyan and PERRIE W. Sea ice characterization and classification using hybrid polarimetry SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(11): 4998–5010. doi: 10.1109/JSTARS.2016.2584542 [92] SINGHA S and RESSEL R. Arctic sea ice characterization using RISAT-1 compact-pol SAR imagery and feature evaluation: A case study over Northeast Greenland[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8): 3504–3514. doi: 10.1109/JSTARS.2017.2691258 [93] SINGHA S. Potential of compact polarimetry for operational sea ice monitoring over arctic and Antarctic region[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 2018: 7113–7116. doi: 10.1109/IGARSS.2018.8517653. [94] ESPESETH M M, BREKKE C, and JOHANSSON A M. Assessment of RISAT-1 and radarsat-2 for sea ice observations from a hybrid-polarity perspective[J]. Remote Sensing, 2017, 9(11): 1088. doi: 10.3390/rs9111088 [95] NASONOVA S, SCHARIEN R K, GELDSETZER T, et al. Optimal compact polarimetric parameters and texture features for discriminating sea ice types during winter and advanced melt[J]. Canadian Journal of Remote Sensing, 2018, 44(4): 390–411. doi: 10.1080/07038992.2018.1527683 [96] DABBOOR M, MONTPETIT B, and HOWELL S. Assessment of simulated compact polarimetry of the high resolution radarsat constellation mission SAR mode for multiyear and first year sea ice characterization[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 2018: 2420–2423. doi: 10.1109/IGARSS.2018.8517737. [97] GHANBARI M, CLAUSI D A, XU Linlin, et al. Contextual classification of sea-ice types using compact polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 7476–7491. doi: 10.1109/TGRS.2019.2913796 [98] TRUONG-LOI M L, FREEMAN A, DUBOIS-FERNANDEZ P C, et al. Estimation of soil moisture and Faraday rotation from bare surfaces using compact polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11): 3608–3615. doi: 10.1109/TGRS.2009.2031428 [99] PONNURANGAM G G, JAGDHUBER T, HAJNSEK I, et al. Soil moisture estimation using hybrid polarimetric SAR data of RISAT-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2033–2049. doi: 10.1109/TGRS.2015.2494860 [100] SANTI E, PETTINATO S, PALOSCIA S, et al. Estimating soil moisture from C and X band Sar using machine learning algorithms and compact polarimetry[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 2018: 1426–1429. doi: 10.1109/IGARSS.2018.8518469. [101] PONNURANGAM G G and RAO Y S. The application of compact polarimetric decomposition algorithms to L-band PolSAR data in agricultural areas[J]. International Journal of Remote Sensing, 2018, 39(22): 8337–8360. doi: 10.1080/01431161.2018.1488281 [102] LAVALLE M, SOLIMINI D, POTTIER E, et al. Compact polarimetric SAR interferometry[J]. IET Radar, Sonar & Navigation, 2010, 4(3): 449–456. doi: 10.1049/iet-rsn.2009.0049 [103] DUBOIS-FERNANDEZ P C, SOUYRIS J C, ANGELLIAUME S, et al. The compact polarimetry alternative for spaceborne SAR at low frequency[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3208–3222. doi: 10.1109/TGRS.2008.919143 [104] 谈璐璐, 杨立波, 杨汝良. 合成孔径雷达简缩极化干涉数据的植被高度反演技术研究[J]. 电子与信息学报, 2010, 32(12): 2814–2819. doi: 10.3724/SP.J.1146.2010.00091TAN Lulu, YANG Libo, and YANG Ruliang. Investigation on vegetation height retrieval technique with compact PolInSAR data[J]. Journal of Electronics &Information Technology, 2010, 32(12): 2814–2819. doi: 10.3724/SP.J.1146.2010.00091 [105] RAMACHANDRAN N and DIKSHIT O. Experimental validation of compact tomosar for vegetation characterization[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 2018: 6727–6730. doi: 10.1109/IGARSS.2018.8517824. [106] SABRY R and AINSWORTH T L. SAR compact polarimetry for change detection and characterization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(3): 898–909. doi: 10.1109/JSTARS.2019.2896536 [107] ZHANG Xuefei, ZHANG Hong, and WANG Chao. Water-change detection with Chinese Gaofen-3 simulated compact polarimetric SAR images[C]. 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 2017. doi: 10.1109/BIGSARDATA.2017.8124940. [108] MAHDIANPARI M, SALEHI B, MOHAMMADIMANESH F, et al. An assessment of simulated compact polarimetric SAR data for wetland classification using random forest algorithm[J]. Canadian Journal of Remote Sensing, 2017, 43(5): 468–484. doi: 10.1080/07038992.2017.1381550 [109] DABBOOR M, BRISCO B, BANKS S, et al. Multitemporal monitoring of wetlands using simulated radarsat constellation mission compact polarimetric SAR data[C]. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, USA, 2017: 4586–4589. doi: 10.1109/IGARSS.2017.8128022. [110] DABBOOR M, BANKS S, WHITE L, et al. Comparison of compact and fully polarimetric SAR for multitemporal wetland monitoring[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(5): 1417–1430. doi: 10.1109/JSTARS.2019.2909437 [111] MOHAMMADIMANESH F, SALEHI B, MAHDIANPARI M, et al. Full and simulated compact polarimetry sar responses to Canadian wetlands: Separability analysis and classification[J]. Remote Sensing, 2019, 11(5): 516. doi: 10.3390/rs11050516 [112] BANKS S, MILLARD K, BEHNAMIAN A, et al. Contributions of actual and simulated satellite SAR data for substrate type differentiation and shoreline mapping in the Canadian arctic[J]. Remote Sensing, 2017, 9(12): 1206. doi: 10.3390/rs9121206 [113] WHITE L, MILLARD K, BANKS S, et al. Moving to the RADARSAT constellation mission: Comparing synthesized compact polarimetry and dual polarimetry data with fully polarimetric RADARSAT-2 data for image classification of peatlands[J]. Remote Sensing, 2017, 9(6): 573. doi: 10.3390/rs9060573 [114] FOBERT M A, SPRAY J G, and SINGHROY V. Assessing the benefits of simulated RADARSAT constellation mission polarimetry images for structural mapping of an impact crater in the Canadian shield[J]. Canadian Journal of Remote Sensing, 2018, 44(4): 321–336. doi: 10.1080/07038992.2018.1517022 [115] BRISCO B, SHELAT Y, MURNAGHAN K, et al. Evaluation of C-band SAR for identification of flooded vegetation in emergency response products[J]. Canadian Journal of Remote Sensing, 2019, 45(1): 73–87. doi: 10.1080/07038992.2019.1612236 [116] LIU Yin, LI Linlin, CHEN Qihao, et al. Building damage assessment of compact polarimetric SAR using statistical model texture parameter[C]. 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 2017. doi: 10.1109/BIGSARDATA.2017.8124923. [117] JEON W and KIM Y. Investigation of hybrid polarimetric features for tsunami-induced damage assessment of urban areas[J]. Remote Sensing Letters, 2019, 10(10): 988–997. doi: 10.1080/2150704x.2019.1637957 期刊类型引用(5)
1. 李铭典,肖顺平,陈思伟. 极化雷达图像目标超分辨率重建研究进展. 电子与信息学报. 2024(05): 1806-1826 . 百度学术
2. 赵含,张王菲,姬永杰,韩宗涛. 简缩极化SAR数据支持的森林地上生物量反演. 遥感学报. 2024(09): 2416-2426 . 百度学术
3. 谢涛,赵立. 海冰密集度卫星遥感反演研究进展. 海洋科学进展. 2022(03): 351-366 . 百度学术
4. 王艳,李昂,王晟全. 基于深度学习的细粒度图像推荐算法研究. 兵器装备工程学报. 2021(02): 162-167 . 百度学术
5. 尹嫱,徐洁. 基于城区特征和SLIC的简缩极化SAR分类方法. 雷达科学与技术. 2021(05): 583-588+597 . 百度学术
其他类型引用(7)
-
计量
- 文章访问数: 5664
- HTML全文浏览量: 2306
- PDF下载量: 568
- 被引次数: 12