多平台合成孔径雷达成像算法综述

邢孟道 林浩 陈溅来 孙光才 严棒棒

邢孟道, 林浩, 陈溅来, 等. 多平台合成孔径雷达成像算法综述[J]. 雷达学报, 2019, 8(6): 732–757. doi: 10.12000/JR19102
引用本文: 邢孟道, 林浩, 陈溅来, 等. 多平台合成孔径雷达成像算法综述[J]. 雷达学报, 2019, 8(6): 732–757. doi: 10.12000/JR19102
XING Mengdao, LIN Hao, CHEN Jianlai, et al. A review of imaging algorithms in multi-platform-borne synthetic aperture radar[J]. Journal of Radars, 2019, 8(6): 732–757. doi: 10.12000/JR19102
Citation: XING Mengdao, LIN Hao, CHEN Jianlai, et al. A review of imaging algorithms in multi-platform-borne synthetic aperture radar[J]. Journal of Radars, 2019, 8(6): 732–757. doi: 10.12000/JR19102

多平台合成孔径雷达成像算法综述

DOI: 10.12000/JR19102
基金项目: 国家自然科学基金(61901531)
详细信息
    作者简介:

    邢孟道(1975–),男,浙江嵊州人,博士生导师、教授,现任西安电子科技大学前沿交叉研究院副院长。2002年获西安电子科技大学工学博士学位并留校工作,2004年破格评为教授。2018年成为中国电子学会会士。曾获国家杰出青年科学基金、国防科技卓越青年人才基金、中青年科技创新领军人才。曾获陕西省科学技术奖一等奖、陕西省创新团队。主要研究雷达成像,侧重于精细成像、灵活成像和大斜视成像等。先后主持国家973、863计划以及预研等多个项目。近五年在TGRS和JSTAR等国际遥感期刊发表论文113篇,SCI他引1617次,H因子42。培养和协助培养“百优”和“省优”博士论文6篇。任IEEE TGRS副主编、IEEE Fellow等。近五年连续入选Elsevier电子和电气工程领域“中国高被引学者榜单”。E-mail: xmd@xidian.edu.cn

    林 浩(1996–),男,浙江嵊州人,西安电子科技大学博士研究生,主要研究机载多模式SAR运动补偿技术与成像等。E-mail: LH_Future1996@163.com

    陈溅来(1990–),男,湖南衡阳人,副教授,硕士生导师,现工作于中南大学航空航天学院。2013~2018年在西安电子科技大学雷达信号处理国家重点实验室攻读博士学位,并于2018年获工学博士学位。2018年评为副教授、硕士生导师,2019年获中国电子教育学会优秀博士学位论文提名奖。主要研究机/星载SAR非线性轨迹信号建模与成像。先后主持国家自然科学基金和航天基金等多个项目。近五年在TGRS、JSTAR和GRSL等国际遥感期刊发表论文10余篇。E-mail: jianlaichen@163.com

    孙光才(1984–),男,湖北孝感汉川人,博士生导师,副教授,IEEE会员。自2007年以来,一直专注于雷达成像技术的研究,目前为西安电子科技大学“雷达信号处理国家重点实验室”学术骨干。主要从事新体制雷达、雷达成像、动目标成像等研究,已在IEEE Trans. on GRS等国际权威刊物发表学术论文多篇。研究成果曾入围了APSAR2013 Young Scientist Award Competition。曾获得2015年陕西省优秀博士学位论文奖和2015年西安电子科技大学优秀博士学位论文奖。E-mail: gcsun@xidian.edu.cn

    严棒棒(1995–),男,江苏宿迁人,西安电子科技大学硕士研究生,主要研究机载滑动聚束SAR成像及GPU实现等。E-mail: Yan_Chrysanthemum@outlook.com

    通讯作者:

    邢孟道 xmd@xidian.edu.cn

    陈溅来 jianlaichen@163.com

  • 中图分类号: TN95

A Review of Imaging Algorithms in Multi-platform-borne Synthetic Aperture Radar

Funds: The National Natural Science Foundation of China (61901531)
More Information
  • 摘要: 多平台合成孔径雷达(SAR)是合成孔径雷达极具发展潜力的研究方向之一,该文集中讨论了多平台SAR的成像算法,包括机载SAR、弹载SAR和星载SAR平台。该文首先简要阐述了SAR回波模型的建立,包括“斜距模型和成像模式”,然后综述了近年来机载SAR、弹载SAR和星载SAR成像算法的研究进展,并详细阐述了各平台固有的特性以及面临的挑战,最后对未来多平台SAR成像算法研究的发展趋势进行了展望。

     

  • 图  1  典型线性轨迹几何模型

    Figure  1.  Geometric model of typical linear trajectory

    图  2  Stripmap,Spotlight和Scan SAR工作几何

    Figure  2.  Working geometry of Stripmap, Spotlight and Scan SAR

    图  3  滑动聚束及TOPS SAR工作几何

    Figure  3.  Working geometry of Sliding Spotlight and TOPS SAR

    图  4  X波段1 m分辨率机载运动补偿前后成像结果图

    Figure  4.  1 m resolution imaging results of airborne SAR before and after motion compensation in X band

    图  5  带宽合成前后的铁路周围成像图

    Figure  5.  Imaging results around the railway before and after band combination

    图  6  采用Two-step进行运动补偿后的RCMC结果

    Figure  6.  The results of RCMC after motion compensation by Two-step algorithm

    图  7  采用文献[54]所提方法进行运动补偿后的RCMC结果

    Figure  7.  The results of RCMC after motion compensation by the algorithm in Ref. [54]

    图  8  0.04 m超高分辨成像结果

    Figure  8.  Imaging results with 0.04 m ultrahigh resolution

    图  9  0.04 m超高分辨局部成像结果

    Figure  9.  Local imaging results with 0.04 m ultrahigh resolution

    图  10  X波段0.1 m大斜视成像结果

    Figure  10.  0.1 m resolution imaging results in squint mode and X band

    图  11  X波段0.8 m分辨率大斜视50°方位重采样成像结果

    Figure  11.  0.8 m resolution imaging results by azimuth resampling with squint angle of 50° and X band

    图  12  Ku波段1.36 m分辨率65°大斜视成像结果

    Figure  12.  1.36 m resolution imaging results in 65° of squint mode in Ku band

    图  13  Ku波段1.5 m大斜视俯冲段处理结果

    Figure  13.  Ku band imaging results of 1.5 m resolution in the case of dive trajectory and squint mode

    图  14  多通道成像流程图

    Figure  14.  The flowchart of multi-channel imaging

    图  15  GF-3号1.5 m条带SAR图像

    Figure  15.  1.5 m resolution SAR imaging results in GF-3

    图  16  Ku波段3.5 m TOPS SAR数据聚焦结果

    Figure  16.  3.5 m resolution TOPS SAR imaging results in Ku band

    图  17  C波段1 m聚束成像结果

    Figure  17.  1 m resolution Spotlight SAR imaging results in C band

    图  18  TerraSAR-X 0.16 m分辨率SAR图像[24]

    Figure  18.  0.16 m resolution SAR imaging of TerraSAR-X[24]

  • [1] HOVANESSIAN S A. Introduction to Synthetic Array and Imaging Radars[M]. Dedham: Artech House, 1980.
    [2] JORDAN R L, HUNEYCUTT B L, and WERNER M. The SIR-C/X-SAR synthetic aperture radar system[J]. Proceedings of the IEEE, 1991, 79(6): 827–838. doi: 10.1109/5.90161
    [3] 王岩飞, 刘畅, 詹学丽, 等. 无人机载合成孔径雷达系统技术与应用[J]. 雷达学报, 2016, 5(4): 333–349. doi: 10.12000/JR16089

    WANG Yanfei, LIU Chang, ZHAN Xueli, et al. Technology and applications of UAV synthetic aperture radar system[J]. Journal of Radars, 2016, 5(4): 333–349. doi: 10.12000/JR16089
    [4] STOFAN E R, EVANS D L, SCHMULLIUS C, et al. Overview of Results of Spaceborne Imaging Radar-C, X-band Synthetic Aperture Radar (SIR-C/X-SAR)[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 817–828. doi: 10.1109/36.406668
    [5] 丁赤飚, 刘佳音, 雷斌, 等. 高分三号SAR卫星系统级几何定位精度初探[J]. 雷达学报, 2017, 6(1): 11–16. doi: 10.12000/JR17024

    DING Chibiao, LIU Jiayin, LEI Bin, et al. Preliminary exploration of systematic geolocation accuracy of GF-3 SAR satellite system[J]. Journal of Radars, 2017, 6(1): 11–16. doi: 10.12000/JR17024
    [6] PITZ W and MILLER D. The TerraSAR-X satellite[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 615–622. doi: 10.1109/tgrs.2009.2037432
    [7] DENG Bin, LI Xiang, WANG Hongqiang, et al. Fast raw-signal simulation of extended scenes for missile-borne SAR with constant acceleration[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(1): 44–48. doi: 10.1109/lgrs.2010.2050675
    [8] CHEN Si, ZHAO Huichang, ZHANG Shuning, et al. An extended nonlinear chirp scaling algorithm for missile borne SAR imaging[J]. Signal Processing, 2014, 99: 58–68. doi: 10.1016/j.sigpro.2013.12.017
    [9] XING Mengdao, JIANG Xiuwei, WU Renbiao, et al. Motion compensation for UAV SAR based on raw radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2870–2883. doi: 10.1109/tgrs.2009.2015657
    [10] LI Yake, LIU Chang, WANG Yanfei, et al. A robust motion error estimation method based on raw data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2780–2790. doi: 10.1109/tgrs.2011.2175737
    [11] WAHL D E, EICHEL P H, GHIGLIA D C, et al. Phase gradient autofocus—a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827–835. doi: 10.1109/7.303752
    [12] 胡文龙. 扁率摄动对地球同步轨道SAR成像聚焦的影响分析[J]. 雷达学报, 2016, 5(3): 312–319. doi: 10.12000/JR15121

    HU Wenlong. Impact of Earth’s oblateness perturbations on geosynchronous SAR data focusing[J]. Journal of Radars, 2016, 5(3): 312–319. doi: 10.12000/JR15121
    [13] 陈溅来. 机/星载SAR非线性轨迹信号建模与成像方法研究[D]. [博士论文], 西安电子科技大学, 2018.

    CHEN Jianlai. Study on signal modeling and imaging algorithm for airborne/spaceborne SAR with nonlinear trajectory[D]. [Ph.D. dissertation], Xidian University, 2018.
    [14] ZHANG Lei, QIAO Zhijun, XING Mengdao, et al. A robust motion compensation approach for UAV SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(8): 3202–3218. doi: 10.1109/tgrs.2011.2180392
    [15] ZHANG Lei, SHENG Jialian, XING Mengdao, et al. Wavenumber-domain Autofocusing for Highly Squinted UAV SAR Imagery[J]. IEEE Sensors Journal, 2012, 12(5): 1574–1588. doi: 10.1109/jsen.2011.2175216
    [16] XU Gang, XING Mengdao, ZHANG Lei, et al. Robust autofocusing approach for highly squinted SAR imagery using the extended wavenumber algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(10): 5031–5046. doi: 10.1109/tgrs.2013.2276112
    [17] 毛新华, 曹海洋, 朱岱寅, 等. 基于先验知识的SAR两维自聚焦算法[J]. 电子学报, 2013, 41(6): 1041–1047. doi: 10.3969/j.issn.0372-2112.2013.06.001

    MAO Xinhua, CAO Haiyang, ZHU Daiyin, et al. Prior knowledge aided two dimensional autofocus approach for synthetic aperture radar[J]. Acta Electronica Sinica, 2013, 41(6): 1041–1047. doi: 10.3969/j.issn.0372-2112.2013.06.001
    [18] CHEN Jianlai, SUN Guangcai, XING Mengdao, et al. A two-dimensional beam-steering method to simultaneously consider Doppler centroid and ground observation in GEOSAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(1): 161–167. doi: 10.1109/jstars.2016.2544349
    [19] LONG Teng, DONG Xichao, HU Cheng, et al. A new method of zero-Doppler centroid control in GEO SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 512–516. doi: 10.1109/lgrs.2010.2089969
    [20] BAO M, XING M D, and LI Y C. Chirp scaling algorithm for GEO SAR based on fourth-order range equation[J]. Electronics Letters, 2012, 48(1): 41–42. doi: 10.1049/el.2011.1892
    [21] HU Cheng, LIU Zhipeng, and LONG Teng. An improved CS algorithm based on the curved trajectory in geosynchronous SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(3): 795–808. doi: 10.1109/jstars.2012.2188096
    [22] SUN Guangcai, XING Mengdao, WANG Yong, et al. A 2-D space-variant chirp scaling algorithm based on the RCM equalization and subband synthesis to process geosynchronous SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4868–4880. doi: 10.1109/tgrs.2013.2285721
    [23] CHEN Jianlai, SUN Guangcai, WANG Yong, et al. A TSVD-NCS algorithm in range-Doppler domain for geosynchronous synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11): 1631–1635. doi: 10.1109/lgrs.2016.2599224
    [24] PRATS-IRAOLA P, SCHEIBER R, RODRIGUEZ-CASSOLA M, et al. On the processing of very high resolution spaceborne SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6003–6016. doi: 10.1109/tgrs.2013.2294353
    [25] HUANG Lijia, QIU Xiaolan, HU Donghui, et al. Focusing of medium-earth-orbit SAR with advanced nonlinear chirp scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 500–508. doi: 10.1109/tgrs.2010.205321
    [26] 黄丽佳, 胡东辉, 丁赤飚, 等. 中高轨道SAR信号建模和成像方法研究[J]. 国外电子测量技术, 2011, 30(6): 21–27, 50. doi: 10.3969/j.issn.1002-8978.2011.06.009

    HUANG Lijia, HU Donghui, DING Chibiao, et al. Study on signal modeling and imaging approach for medium-earth-orbit SAR[J]. Foreign Electronic Measurement Technology, 2011, 30(6): 21–27, 50. doi: 10.3969/j.issn.1002-8978.2011.06.009
    [27] CHEN Juan, ZENG Dazhi, and LONG Teng. High precision radar echo modelling and simulation method[C]. 2008 International Conference on Radar, Adelaide, Australia, 2008. doi: 10.1109/radar.2008.4653969.
    [28] SUN Guangcai, JIANG Xiuwei, XING Mengdao, et al. Focus improvement of highly squinted data based on azimuth nonlinear scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2308–2322. doi: 10.1109/tgrs.2010.2102040
    [29] ZHANG Shuangxi, XING Mengdao, XIA Xianggen, et al. Focus improvement of high-squint SAR based on azimuth dependence of quadratic range cell migration correction[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 150–154. doi: 10.1109/lgrs.2012.2195634
    [30] 李震宇, 梁毅, 邢孟道, 等. 弹载合成孔径雷达大斜视子孔径频域相位滤波成像算法[J]. 电子与信息学报, 2015, 37(4): 953–960. doi: 10.11999/JEIT140618

    LI Zhenyu, LIANG Yi, XING Mengdao, et al. A frequency phase filtering imaging algorithm for highly squint missile-borne synthetic aperture radar with subaperture[J]. Journal of Electronics &Information Technology, 2015, 37(4): 953–960. doi: 10.11999/JEIT140618
    [31] ELDHUSET K. A new fourth-order processing algorithm for spaceborne SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3): 824–835. doi: 10.1109/7.705890
    [32] BAO M, XING M D, LI Y C, et al. Two-dimensional spectrum for MEO SAR processing using a modified advanced hyperbolic range equation[J]. Electronics Letters, 2011, 47(18): 1043–1045. doi: 10.1049/el.2011.1322
    [33] WANG Pengbo, LIU Wei, CHEN Jie, et al. A high-order imaging algorithm for high-resolution spaceborne SAR based on a modified equivalent squint range model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1225–1235. doi: 10.1109/TGRS.2014.2336241
    [34] ZHANG Shuangxi, XING Mengdao, XIA Xianggen, et al. Multichannel HRWS SAR imaging based on range-variant channel calibration and multi-Doppler-direction restriction ambiguity suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4306–4327. doi: 10.1109/tgrs.2013.2281329
    [35] 刘光炎, 孟喆. 合成孔径雷达Mosaic模式系统性能分析[J]. 微波学报, 2011, 27(3): 88–92.

    LIU Guangyan and MENG Zhe. Performance analysis of mosaic mode for SAR system[J]. Journal of Microwaves, 2011, 27(3): 88–92.
    [36] SHARAY Y and NAFTALY U. TECSAR: Design considerations and programme status[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(2): 117–121. doi: 10.1049/ip-rsn:20045124
    [37] GEBERT N, KRIEGER G, and MOREIRA A. Digital beamforming on receive: Techniques and optimization strategies for high-resolution wide-swath SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 564–592. doi: 10.1109/taes.2009.5089542
    [38] ZHU Daiyin, JIANG Rui, MAO Xinhua, et al. Multi-subaperture PGA for SAR autofocusing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 468–488. doi: 10.1109/taes.2013.6404115
    [39] BERIZZI F, MARTORELLA M, CACCIAMANO A, et al. A contrast-based algorithm for synthetic range-profile motion compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3053–3062. doi: 10.1109/TGRS.2008.2002576
    [40] YE Wei, YEO T S, and BAO Zheng. Weighted least-squares estimation of phase errors for SAR/ISAR autofocus[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2487–2494. doi: 10.1109/36.789644
    [41] XIONG Tao, XING Mengdao, WANG Yong, et al. Minimum-entropy-based autofocus algorithm for SAR data using chebyshev approximation and method of series reversion, and its implementation in a data processor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1719–1728. doi: 10.1109/tgrs.2013.2253781
    [42] CHEN Jianlai, LIANG Buge, YANG Degui, et al. Two-step accuracy improvement of motion compensation for airborne SAR with ultrahigh resolution and wide swath[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 7148–7160. doi: 10.1109/tgrs.2019.2911952
    [43] MAO Xinhua, HE Xueli, and LI Danqi. Knowledge-AIDED 2-D autofocus for spotlight SAR range migration algorithm imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5458–5470. doi: 10.1109/tgrs.2018.2817507
    [44] PRATS P, DE MACEDO K A C, REIGBER A, et al. Comparison of topography- and aperture-dependent motion compensation algorithms for airborne SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(3): 349–353. doi: 10.1109/lgrs.2007.895712
    [45] ZHANG Lei, WANG Guanyong, QIAO Zhijun, et al. Azimuth motion compensation with improved subaperture algorithm for airborne SAR imaging[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(1): 184–193. doi: 10.1109/jstars.2016.2577588
    [46] DESAI M D and JENKINS W K. Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar[J]. IEEE Transactions on Image Processing, 1992, 1(4): 505–517. doi: 10.1109/83.199920
    [47] TAN Weixian, LI Daojing, and HONG Wen. Airborne spotlight SAR imaging with super high resolution based on back-projection and autofocus algorithm[C]. The 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, USA, 2008. doi: 10.1109/igarss.2008.4779969.
    [48] PONCE O, PRATS P, SCHEIBER R, et al. Multibaseline 3-D circular SAR imaging AT L-band[C]. The 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 2012.
    [49] WEI Shunjun, ZHANG Xiaoling, HU Kebing, et al. LASAR autofocus imaging using maximum sharpness back projection via semidefinite programming[C].2015 IEEE Radar Conference, Arlington, USA, 2015. doi: 10.1109/radar.2015.7131198.
    [50] ZHANG Lei, LI Haolin, QIAO Zhijun, et al. Integrating autofocus techniques with fast factorized back-projection for high-resolution spotlight SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1394–1398. doi: 10.1109/lgrs.2013.2258886
    [51] 李浩林, 陈露露, 张磊, 等. 一种适用于快速分解后向投影聚束SAR成像的自聚焦方法[J]. 航空学报, 2014, 35(7): 2011–2018. doi: 10.7527/s1000-6893.2013.0040

    LI Haolin, CHEN Lulu, ZHANG Lei, et al. An autofocus method for spotlight SAR imagery created by fast factorized back-projection[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 2011–2018. doi: 10.7527/s1000-6893.2013.0040
    [52] 李浩林, 陈露露, 张磊, 等. 快速分解后向投影SAR成像的自聚焦算法研究[J]. 电子与信息学报, 2014, 36(4): 938–945. doi: 10.3724/sp.j.1146.2013.00011

    LI Haolin, CHEN Lulu, ZHANG Lei, et al. Study of autofocus method for SAR imagery created by fast factorized backprojection[J]. Journal of Electronics &Information Technology, 2014, 36(4): 938–945. doi: 10.3724/sp.j.1146.2013.00011
    [53] YANG Zemin, XING Mengdao, ZHANG Lei, et al. A coordinate-transform based FFBP algorithm for high-resolution spotlight SAR imaging[J]. Science China Information Sciences, 2015, 58(2): 020303. doi: 10.1007/s11432-014-5262-x
    [54] CHEN Jianlai, XING Mengdao, SUN Guangcai, et al. A 2-D space-variant motion estimation and compensation method for ultrahigh-resolution airborne stepped-frequency SAR with long integration time[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6390–6401. doi: 10.1109/tgrs.2017.2727060
    [55] 邵鹏, 邢孟道, 李学仕, 等. 一种新的频域带宽合成的斜视高分辨SAR成像方法[J]. 西安电子科技大学学报: 自然科学版, 2015, 42(2): 28–34. doi: 10.3969/j.issn.1001-2400.2015.02.005

    SHAO Peng, XING Mengdao, LI Xueshi, et al. Squinted high resolution SAR based on the frequency synthetic bandwidth[J]. Journal of Xidian University, 2015, 42(2): 28–34. doi: 10.3969/j.issn.1001-2400.2015.02.005
    [56] HU Jianmin, WANG Yanfei, and LI Heping. Channel phase error estimation and compensation for ultrahigh-resolution airborne SAR system based on echo data[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6): 1069–1073. doi: 10.1109/lgrs.2012.2190133
    [57] 景国彬, 孙光才, 邢孟道, 等. 一种新的步进频MIMO-SAR带宽合成的两步处理方法[J]. 西安电子科技大学学报:自然科学版, 2018, 45(2): 148–153, 159. doi: 10.3969/j.issn.1001-2400.2018.02.025

    JING Guobin, SUN Guangcai, XING Mengdao, et al. Novel two-step method of bandwidth synthesis for SF-MIMO-SAR[J]. Journal of Xidian University, 2018, 45(2): 148–153, 159. doi: 10.3969/j.issn.1001-2400.2018.02.025
    [58] 景国彬, 李宁, 孙光才, 等. 联合误差估计的机载超高分辨率SAR成像[J]. 西安电子科技大学学报, 2019, 46(3): 1–7. doi: 10.19665/j.issn1001-2400.2019.03.001

    JING Guobin, LI Ning, SUN Guangcai, et al. Very high resolution SAR imaging method combined with motion estimation[J]. Journal of Xidian University, 2019, 46(3): 1–7. doi: 10.19665/j.issn1001-2400.2019.03.001
    [59] DAVIDSON G W, CUMMING I G, and ITO M R. A chirp scaling approach for processing squint mode SAR data[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(1): 121–133. doi: 10.1109/7.481254
    [60] MOREIRA A and HUANG Yonghong. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1029–1040. doi: 10.1109/36.312891
    [61] GAZDAG J and SGUAZZERO P. Migration of seismic data[J]. Proceedings of the IEEE, 1984, 72(10): 1302–1315. doi: 10.1109/proc.1984.13019
    [62] SUN Guangcai, XING Mengdao, LIU Yan, et al. Extended NCS based on method of series reversion for imaging of highly squinted SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 446–450. doi: 10.1109/lgrs.2010.2084562
    [63] NEO Y L, WONG F, and CUMMING I G. A two-dimensional spectrum for bistatic SAR processing using series reversion[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 93–96. doi: 10.1109/lgrs.2006.885862
    [64] XIONG Tao, XING Mengdao, XIA Xianggen, et al. New applications of omega-K algorithm for SAR data processing using effective wavelength at high squint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3156–3169. doi: 10.1109/tgrs.2012.2213342
    [65] 雷万明, 刘光炎, 黄顺吉. 基于RD算法的星载SAR斜视成像[J]. 信号处理, 2002, 18(2): 172–176, 140. doi: 10.3969/j.issn.1003-0530.2002.02.020

    LEI Wanming, LIU Guangyan, and HUANG Shunji. The squint imaging of spaceborne SAR in RD algorithm[J]. Signal Processing, 2002, 18(2): 172–176, 140. doi: 10.3969/j.issn.1003-0530.2002.02.020
    [66] AN Daoxiang, HUANG Xiaotao, JIN Tian, et al. Extended nonlinear chirp scaling algorithm for high-resolution highly squint SAR data focusing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(9): 3595–3609. doi: 10.1109/tgrs.2012.2183606
    [67] WU Yufeng, SUN Guangcai, XIA Xianggen, et al. An azimuth Frequency Non-linear Chirp Scaling (FNCS) algorithm for TOPS SAR imaging with high squint angle[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1): 213–221. doi: 10.1109/jstars.2013.2258893
    [68] ZENG Letian, LIANG Yi, XING Mengdao, et al. A novel motion compensation approach for airborne spotlight SAR of high-resolution and high-squint mode[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 429–433. doi: 10.1109/lgrs.2016.2517099
    [69] XING Mengdao, WU Yufeng, ZHANG Y D, et al. Azimuth resampling processing for highly squinted synthetic aperture radar imaging with several modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4339–4352. doi: 10.1109/tgrs.2013.2281454
    [70] 周鹏, 李亚超, 邢孟道. 弹载扫描SAR宽测绘带模式成像方法研究[J]. 西安电子科技大学学报: 自然科学版, 2011, 38(1): 96–103. doi: 10.3969/j.issn.1001-2400.2011.01.016

    ZHOU Peng, LI Yachao, and XING Mengdao. Study of the imaging method of the missile-borne scan SAR wide-swath mode[J]. Journal of Xidian University, 2011, 38(1): 96–103. doi: 10.3969/j.issn.1001-2400.2011.01.016
    [71] YEO T S, TAN N L, ZHANG Chengbo, et al. A new subaperture approach to high squint SAR processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(5): 954–968. doi: 10.1109/36.921413
    [72] LIU Yan, XING Mengdao, SUN Cuangcai, et al. Echo model analyses and imaging algorithm for high-resolution SAR on high-speed platform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3): 933–950. doi: 10.1109/tgrs.2011.2162243
    [73] LIANG Yi, LI Zhenyu, ZENG Letian, et al. A high-order phase correction approach for focusing HS-SAR small-aperture data of high-speed moving platforms[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(9): 4451–4561. doi: 10.1109/jstars.2015.2459765
    [74] LI Zhenyu, LIANG Yi, XING Mengdao, et al. Focusing of highly squinted SAR data with frequency nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(1): 23–27. doi: 10.1109/lgrs.2015.2492681
    [75] LIANG Yi, HUAI Yuanyuan, DING Jinshan, et al. A modified ω-k algorithm for HS-SAR small-aperture data imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3710–3721. doi: 10.1109/tgrs.2016.2525787
    [76] 李震宇, 陈溅来, 梁毅, 等. 带有多普勒中心空变校正的大斜视SAR成像方法[J]. 西安电子科技大学学报: 自然科学版, 2016, 43(3): 19–24. doi: 10.3969/j.issn.1001-2400.2016.03.004

    LI Zhenyu, CHEN Jianlai, LIANG Yi, et al. Imaging method for highly squinted SAR with spatially-variant doppler centroid correction[J]. Journal of Xidian University, 2016, 43(3): 19–24. doi: 10.3969/j.issn.1001-2400.2016.03.004
    [77] TANG Shiyang, ZHANG Linrang, GUO Ping, et al. An omega-K algorithm for highly squinted missile-borne SAR with constant acceleration[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(9): 1569–1573. doi: 10.1109/lgrs.2014.2301718
    [78] TANG Shiyang, ZHANG Linrang, GUO Ping, et al. Acceleration model analyses and imaging algorithm for highly squinted airborne spotlight-Mode SAR with maneuvers[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(3): 1120–1131. doi: 10.1109/jstars.2015.2399103
    [79] ZENG Tao, LI Yinghe, DING Zegang, et al. Subaperture approach based on azimuth-dependent range cell migration correction and azimuth focusing parameter equalization for maneuvering high-squint-mode SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6718–6734. doi: 10.1109/tgrs.2015.2447393
    [80] LI Zhenyu, XING Mengdao, LIANG Yi, et al. A frequency-domain imaging algorithm for highly squinted SAR mounted on maneuvering platforms with nonlinear trajectory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 4023–4038. doi: 10.1109/tgrs.2016.2535391
    [81] BIE Bowen, XING Mengdao, XIA Xianggen, et al. A frequency domain backprojection algorithm based on local cartesian coordinate and subregion range migration correction for high-squint SAR mounted on maneuvering platforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12): 7086–7101. doi: 10.1109/tgrs.2018.2848249
    [82] TANG Shiyang, ZHANG Linrang, GUO Ping, et al. Processing of monostatic SAR data with general configurations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6529–6546. doi: 10.1109/tgrs.2015.2443835
    [83] BIE Bowen, SUN Guangcai, XIA Xianggen, et al. High-speed maneuvering platforms squint beam-steering SAR imaging without subaperture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6974–6985. doi: 10.1109/tgrs.2019.2909729
    [84] ALBUQUERQUE M, PRATS P, and SCHEIBER R. Applications of time-domain back-projection SAR processing in the airborne case[C]. The 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2008. doi: 10.13140/rg.2.1.1928.8487.
    [85] YEGULALP A F. Fast backprojection algorithm for synthetic aperture radar[C]. The 1999 IEEE Radar Conference. Radar into the Next Millennium, Waltham, USA, 1999. doi: 10.1109/nrc.1999.767270.
    [86] ULANDER L M H, HELLSTEN H, and STENSTROM G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 760–776. doi: 10.1109/taes.2003.1238734
    [87] 董祺, 杨泽民, 孙光才, 等. 子场景处理的弹载前斜视SAR时域成像算法[J]. 系统工程与电子技术, 2017, 39(5): 1013–1018. doi: 10.3969/j.issn.1001-506x.2017.05.10

    DONG Qi, YANG Zemin, SUN Guangcai, et al. Missile-borne forward squint SAR time-domain imaging algorithm based on sub-region processing[J]. Systems Engineering and Electronics, 2017, 39(5): 1013–1018. doi: 10.3969/j.issn.1001-506x.2017.05.10
    [88] 景国彬, 盛佳恋, 陈溅来, 等. 一种强杂波背景下SAR目标超分辨成像方法[J]. 西安电子科技大学学报: 自然科学版, 2016, 43(5): 12–17, 87. doi: 10.3969/j.issn.1001-2400.2016.05.003

    JING Guobin, SHENG Jialian, CHEN Jianlai, et al. Super-resolution imaging method for the SAR target in a strong clutter scene[J]. Journal of Xidian University, 2016, 43(5): 12–17, 87. doi: 10.3969/j.issn.1001-2400.2016.05.003
    [89] 盛佳恋, 张磊, 邢孟道, 等. 一种利用稀疏统计特性的超分辨ISAR成像方法[J]. 西安电子科技大学学报: 自然科学版, 2012, 39(6): 55–60.

    SHENG Jialian, ZHANG Lei, XING Mengdao, et al. Super-resolution ISAR imaging method with sparse statistics[J]. Journal of Xidian University, 2012, 39(6): 55–60.
    [90] 许然. 提高雷达成像质量的若干新体制和新方法研究[D]. [博士论文], 西安电子科技大学, 2015.

    XU Ran. Study on new systems and techniques for improving radar imaging performances[D]. [Ph.D. dissertation], Xidian University, 2015.
    [91] 董臻, 朱国富, 梁甸农. 基于外推的SAR图像分辨率增强算法[J]. 电子学报, 2002, 30(3): 359–362. doi: 10.3321/j.issn:0372-2112.2002.03.015

    DONG Zhen, ZHU Guofu, and LIANG Diannong. Enhancing the resolution of SAR image by extrapolation[J]. Acta Electronica Sinica, 2002, 30(3): 359–362. doi: 10.3321/j.issn:0372-2112.2002.03.015
    [92] 田鹤, 李道京. 稀疏重航过阵列SAR运动误差补偿和三维成像方法[J]. 雷达学报, 2018, 7(6): 717–729. doi: 10.12000/JR18101

    TIAN He and LI Daojing. Motion compensation and 3-D imaging algorithm in sparse flight based airborne array SAR[J]. Journal of Radars, 2018, 7(6): 717–729. doi: 10.12000/JR18101
    [93] 闫敏, 韦顺军, 田博坤, 等. 基于稀疏贝叶斯正则化的阵列SAR高分辨三维成像算法[J]. 雷达学报, 2018, 7(6): 705–716. doi: 10.12000/JR18067

    YAN Min, WEI Shunjun, TIAN Bokun, et al. LASAR high-resolution 3D imaging algorithm based on sparse Bayesian regularization[J]. Journal of Radars, 2018, 7(6): 705–716. doi: 10.12000/JR18067
    [94] WEIB M, PETERS O, and ENDER J. A three dimensional SAR system on an UAV[C]. The 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007: 5315–5318. doi: 10.1109/igarss.2007.4424062.
    [95] MENG Ziqiang, LI Yachao, XING Mengdao, et al. Property analysis of bistatic forward-looking SAR with arbitrary geometry[J]. Journal of Systems Engineering and Electronics, 2016, 27(1): 111–127.
    [96] 孟自强, 李亚超, 汪宗福, 等. 弹载双基前视SAR俯冲段弹道设计方法[J]. 系统工程与电子技术, 2015, 37(4): 768–774. doi: 10.3969/j.issn.1001-506x.2015.04.08

    MENG Ziqiang, LI Yachao, WANG Zongfu, et al. Design method of MBFL-SAR trajectory during terminal diving period[J]. Systems Engineering and Electronics, 2015, 37(4): 768–774. doi: 10.3969/j.issn.1001-506x.2015.04.08
    [97] MENG Ziqiang, LI Yachao, LI Chunbiao, et al. A raw data simulator for Bistatic forward-looking high-speed maneuvering-platform SAR[J]. Signal Processing, 2015, 117: 151–164. doi: 10.1016/j.sigpro.2015.05.008
    [98] 孟自强, 李亚强, 邢孟道, 等. 基于斜距等效的弹载双基前视SAR相位空变校正方法[J]. 电子与信息学报, 2016, 38(3): 613–621. doi: 10.11999/JEIT150782

    MENG Ziqiang, LI Yaqiang, XING Mengdao, et al. Phase space-variance correction method for missile-borne bistatic forward-looking SAR based on equivalent range equation[J]. Journal of Electronics &Information Technology, 2016, 38(3): 613–621. doi: 10.11999/JEIT150782
    [99] 孟自强, 李亚超, 邢孟道, 等. 弹载双基前视SAR扩展场景成像算法设计[J]. 西安电子科技大学学报: 自然科学版, 2016, 43(3): 31–37. doi: 10.3969/j.issn.1001-2400.2016.03.006

    MENG Ziqiang, LI Yachao, XING Mengdao, et al. Imaging method for the extended scene of missile-borne bistatic forward-looking SAR[J]. Journal of Xidian University, 2016, 43(3): 31–37. doi: 10.3969/j.issn.1001-2400.2016.03.006
    [100] MOORE R K, CLAASSEN J P, and LIN Y H. Scanning spaceborne synthetic aperture radar with integrated radiometer[J]. IEEE Transactions on Aerospace and Electronic Systems, 1981, AES-17(3): 410–421. doi: 10.1109/taes.1981.309069
    [101] KRIEGER G, GEBERT N, YOUNIS M, et al. Advanced concepts for ultra-wide-swath SAR imaging[C]. The 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2008.
    [102] 范怀涛, 张志敏, 李宁. 基于特征分解的方位向多通道SAR相位失配校正方法[J]. 雷达学报, 2018, 7(3): 346–354. doi: 10.12000/JR17012

    FAN Huaitao, ZHANG Zhimin, and LI Ning. Channel phase mismatch calibration for multichannel in azimuth SAR imaging based on eigen-structure method[J]. Journal of Radars, 2018, 7(3): 346–354. doi: 10.12000/JR17012
    [103] LI Zhenfang, BAO Zheng, WANG Hongyang, et al. Performance improvement for constellation SAR using signal processing techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(2): 436–452. doi: 10.1109/taes.2006.1642562
    [104] ZHANG L, XING M D, QIU C W, et al. Adaptive two-step calibration for high resolution and wide-swath SAR imaging[J]. IET Radar, Sonar & Navigation, 2010, 4(4): 548–559. doi: 10.1049/iet-rsn.2008.0158
    [105] JIN Feng, GAO Canguan, ZHANG Yi, et al. Phase mismatch calibration of the multichannel SAR based on azimuth cross correlation[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 903–907. doi: 10.1109/lgrs.2012.2227107
    [106] ZHANG Shuangxi, XING Mengdao, XIA Xianggen, et al. A robust channel-calibration algorithm for multi-channel in azimuth HRWS SAR imaging based on local maximum-likelihood weighted minimum entropy[J]. IEEE Transactions on Image Processing, 2013, 22(12): 5294–5305. doi: 10.1109/tip.2013.2274387
    [107] 左绍山, 孙光才, 邢孟道. 一种改进的方位多通道SAR误差校正方法[J]. 西安电子科技大学学报: 自然科学版, 2017, 44(3): 13–18. doi: 10.3969/j.issn.1001-2400.2017.03.003

    ZUO Shaoshan, SUN Guangcai, and XING Mengdao. Improved channel error calibration method for the azimuth multichannel SAR[J]. Journal of Xidian University, 2017, 44(3): 13–18. doi: 10.3969/j.issn.1001-2400.2017.03.003
    [108] KRIEGER G, GEBERT N, and MOREIRA A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260–264. doi: 10.1109/lgrs.2004.832700
    [109] LI Zhenfang, WANG Hongyan, TAO Su, et al. Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(1): 82–86. doi: 10.1109/lgrs.2004.840610
    [110] ZHANG Shuangxi, XING Mengdao, XIA Xianggen, et al. A robust imaging algorithm for squint mode multi-channel high-resolution and wide-swath SAR with hybrid baseline and fluctuant terrain[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1583–1598. doi: 10.1109/jstsp.2015.2464182
    [111] ZUO Shaoshan, XING Mengdao, XIA Xianggen, et al. Improved signal reconstruction algorithm for multichannel SAR based on the doppler spectrum estimation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(4): 1425–1442. doi: 10.1109/jstars.2016.2618518
    [112] KIRSCHT M. Detection and imaging of arbitrarily moving targets with single-channel SAR[J]. IEE Proceedings - Radar, Sonar and Navigation, 2003, 150(1): 7–11. doi: 10.1049/ip-rsn:20030076
    [113] MARQUES P and DIAS J M B. Velocity estimation of fast moving targets using undersampled SAR raw-data[C]. IEEE 2001 International Geoscience and Remote Sensing Symposium Scanning the Present and Resolving the Future, Sydney, Australia, 2001: 1610–1613.
    [114] ZHOU F, WU R, XING M, et al. Approach for single channel SAR ground moving target imaging and motion parameter estimation[J]. IET Radar, Sonar & Navigation, 2007, 1(1): 59–66.
    [115] BARBAROSSA S. Detection and imaging of moving objects with synthetic aperture radar. 1. Optimal detection and parameter estimation theory[J]. IEE Proceedings F - Radar and Signal Processing, 1992, 139(1): 79–88. doi: 10.1049/ip-f-2.1992.0010
    [116] LEGG J, BOLTON A, and GRAY D. SAR moving target detection using non-uniform PRI[C]. The 1st European Conference on Synthetic Aperture Radar, Konigswinter, Germany, 1996: 423–426.
    [117] DIAS J M B and MARQUES P A C. Multiple moving target detection and trajectory estimation using a single SAR sensor[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2): 604–624. doi: 10.1109/TAES.2003.1207269
    [118] MARQUES P A C and DIAS J M B. Velocity estimation of fast moving targets using a single SAR sensor[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1): 75–89. doi: 10.1109/TAES.2005.1413748
    [119] WU Qisong, XING Mengdao, QIU Chengwei, et al. Motion parameter estimation in the SAR system with low PRF sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(3): 450–454. doi: 10.1109/LGRS.2009.2039113
    [120] JAO J K. Theory of synthetic aperture radar imaging of a moving target[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9): 1984–1992. doi: 10.1109/36.951089
    [121] ZHU Daiyin, LI Yong, and ZHU Zhaoda. A keystone transform without interpolation for SAR ground moving-target imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 18–22. doi: 10.1109/LGRS.2006.882147
    [122] PERRY R P, DIPIETRO R C, and FANTE R L. SAR imaging of moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 188–200. doi: 10.1109/7.745691
    [123] WANG Libao, XU Jia, PENG Shibao, et al. Ground moving target indication for MIMO-SAR[C]. The 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xi’an, China, 2009.
    [124] 赵团, 邓云凯, 王宇, 等. 基于扇贝效应校正的改进滑动Mosaic全孔径成像算法[J]. 雷达学报, 2016, 5(5): 548–557. doi: 10.12000/JR16014

    ZHAO Tuan, DENG Yunkai, WANG Yu, et al. Processing sliding Mosaic mode data with modified full-aperture imaging algorithm integrating scalloping correction[J]. Journal of Radars, 2016, 5(5): 548–557. doi: 10.12000/JR16014
    [125] 陈世阳, 黄丽佳, 俞雷. 基于改进sinc插值的变PRF采样聚束SAR成像[J]. 雷达学报, 2019, 8(4): 527–536. doi: 10.12000/JR18095

    CHEN Shiyang, HUANG Lijia, and YU Lei. A novel sinc interpolation for continuous PRF sampled sequences reconstruction in spotlight SAR[J]. Journal of Radars, 2019, 8(4): 527–536. doi: 10.12000/JR18095
    [126] MITTERMAYER J, MOREIRA A, and LOFFELD O. Spotlight SAR data processing using the frequency scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2198–2214. doi: 10.1109/36.789617
    [127] LANARI R, TESAURO M, SANSOSTI E, et al. Spotlight SAR data focusing based on a Two-step processing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9): 1993–2004. doi: 10.1109/36.951090
    [128] NIE Xin, SHEN Shijian, YU Hui, et al. A wide-field SAR polar format algorithm based on quadtree sub-image segmentation[C]. The 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 9355–9358. doi: 10.1109/igarss.2018.8651415.
    [129] CARRARA W G, GOODMAN R S, and RICOY M A. New algorithms for widefield SAR image formation[C]. The 2004 IEEE Radar Conference, Philadelphia, USA, 2004: 8–43. doi: 10.1109/nrc.2004.1316392.
    [130] MITTERMAYER J, LORD R, and BORNER E. Sliding spotlight SAR processing for Terra SAR-X using a new formulation of the extended chirp scaling algorithm[C]. The 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 1462–1464. doi: 10.1109/igarss.2003.1294144
    [131] LANARI R, ZOFFOLI S, SANSOSTI E, et al. New approach for hybrid strip-map/spotlight SAR data focusing[J]. IEE Proceedings-Radar, Sonar and Navigation, 2001, 148(6): 363–372. doi: 10.1049/ip-rsn:20010662
    [132] PRATS P, SCHEIBER R, MITTERMAYER J, et al. Processing of sliding spotlight and TOPS SAR data using baseband azimuth scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 770–780. doi: 10.1109/tgrs.2009.2027701
    [133] ENGEN G and LARSEN Y. Efficient full aperture processing of TOPS mode data using the moving band CHIRP Z-transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3688–3693. doi: 10.1109/tgrs.2011.2145384
    [134] XU Wei, HUANG Pingping, DENG Yunkai, et al. An efficient approach with scaling factors for TOPS-mode SAR data focusing[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(5): 929–933. doi: 10.1109/lgrs.2011.2135837
    [135] LANARI R, HENSLEY S, and ROSEN P. Modified SPECAN algorithm for ScanSAR data processing[C]. The 1998 IEEE International Geoscience and Remote Sensing, Seattle, USA, 1998: 636–638. doi: 10.1109/igarss.1998.699535.
    [136] EINEDER M, SCHATTLER B, BREIT H, et al. TerraSAR-X SAR products and processing algorithms[C]. The 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, South Korea, 2005: 4870–4873. doi: 10.1109/igarss.2005.1526765.
    [137] SUN Jinping, HU Yuxing, HONG Wen, et al. A unified imaging algorithm for multimode spaceborne SAR[C]. The 9th International Conference on Signal Processing, Beijing, China, 2008: 2314–2317. doi: 10.1109/icosp.2008.4697612.
    [138] SUN Guangcai, XING Mengdao, WANG Yong, et al. Sliding spotlight and TOPS SAR data processing without subaperture[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1036–1040. doi: 10.1109/lgrs.2011.2151174
    [139] SUN Guangcai, XING Mengdao, XIA Xianggen, et al. Beam steering SAR data processing by a generalized PFA[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4366–4377. doi: 10.1109/tgrs.2012.2237407
    [140] SUN Guangcai, XING Mengdao, XIA Xianggen, et al. A unified focusing algorithm for several modes of SAR based on FRFT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3139–3155. doi: 10.1109/tgrs.2012.2212280
    [141] SUN Guangcai, XING Mengdao, XIA Xianggen, et al. Multichannel full-aperture azimuth processing for beam steering SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9): 4761–4778. doi: 10.1109/tgrs.2012.2230267
    [142] HE Feng, CHEN Qi, DONG Zhen, et al. Processing of ultrahigh-resolution spaceborne sliding spotlight SAR data on curved orbit[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 819–839. doi: 10.1109/taes.2013.6494383
    [143] 刘燕, 孙光才, 邢孟道. 大场景高分辨率星载聚束SAR修正-k算法[J]. 电子与信息学报, 2011, 33(9): 1225–1235. doi: 10.3724/SP.J.1146.2011.00150

    LIU Yan, SUN Guangcai, XING Mengdao. A modified ω-k algorithm for wide-field and high-resolution spaceborne Spotlight SAR[J]. Journal of Electronic &Information Technology, 2011, 33(9): 1225–1235. doi: 10.3724/SP.J.1146.2011.00150
    [144] WU Yuan, SUN Guangcai, YANG Chun, et al. Processing of very high resolution spaceborne sliding spotlight SAR data using velocity scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1505–1518. doi: 10.1109/tgrs.2015.2481923
    [145] SUN Guangcai, WU Yuan, YANG Jun, et al. Full-aperture focusing of very high resolution spaceborne-squinted sliding spotlight SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3309–3321. doi: 10.1109/tgrs.2017.2669205
    [146] HU Cheng, LONG Teng, ZENG Tao, et al. The accurate focusing and resolution analysis method in geosynchronous SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3548–3563. doi: 10.1109/tgrs.2011.2160402
    [147] HU Cheng, LONG Teng, LIU Zhipeng, et al. An improved frequency domain focusing method in geosynchronous SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5514–5528. doi: 10.1109/tgrs.2013.2290133
    [148] HUANG Lijia, QIU Xiaolan, HU Donghui, et al. Medium-earth-orbit SAR focusing using range doppler algorithm with integrated two-step azimuth perturbation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 626–630. doi: 10.1109/lgrs.2014.2353674
    [149] CHEN Jianlai, SUN Guangcai, WANG Yong, et al. An analytical resolution evaluation approach for bistatic GEOSAR based on local feature of ambiguity function[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2159–2169. doi: 10.1109/tgrs.2017.2776151
    [150] CHEN Jianlai, SUN Guangcai, XING Mengdao, et al. Focusing improvement of curved trajectory spaceborne SAR based on optimal LRWC preprocessing and 2-D singular value decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4246–4258. doi: 10.1109/tgrs.2018.2890294
    [151] XU Jia, XIA Xianggen, PENG Shibao, et al. Radar maneuvering target motion estimation based on generalized radon-fourier transform[J]. IEEE Transactions on Signal Processing, 2012, 60(12): 6190–6201. doi: 10.1109/tsp.2012.2217137
    [152] HUANG Penghui, LIAO Guisheng, YANG Zhiwei, et al. Long-time coherent integration for weak maneuvering target detection and high-order motion parameter estimation based on keystone transform[J]. IEEE Transactions on Signal Processing, 2016, 64(15): 4013–4026. doi: 10.1109/tsp.2016.2558161
    [153] HUANG Penghui, LIAO Guisheng, YANG Zhiwei, et al. An approach for refocusing of ground moving target without target motion parameter estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 336–350. doi: 10.1109/tgrs.2016.2606437
    [154] 邢孟道, 高悦欣, 陈溅来, 等. 海上舰船目标雷达成像算法[J]. 科技导报, 2017, 35(20): 53–60. doi: 10.3981/j.issn.1000-7857.2017.20.005

    XING Mengdao, GAO Yuexin, CHEN Jianlai, et al. A survey of the radar imaging algorithms for ship targets on the sea[J]. Science &Technology Review, 2017, 35(20): 53–60. doi: 10.3981/j.issn.1000-7857.2017.20.005
    [155] 杨利超, 高悦欣, 邢孟道, 等. 基于广义keystone和频率变标的微波光子ISAR高分辨实时成像算法[J]. 雷达学报, 2019, 8(2): 215–223. doi: 10.12000/JR18120

    YANG Lichao, GAO Yuexin, XING Mengdao, et al. High resolution microwave photonics radar real-time imaging based on generalized keystone and frequency scaling[J]. Journal of Radars, 2019, 8(2): 215–223. doi: 10.12000/JR18120
    [156] 陈潇翔, 邢孟道. 基于空变运动误差分析的微波光子超高分辨SAR成像方法[J]. 雷达学报, 2019, 8(2): 205–214. doi: 10.12000/JR18121

    CHEN Xiaoxiang and XING Mengdao. An ultra-high-resolution microwave photonic-based SAR image method based on space-variant motion error analysis[J]. Journal of Radars, 2019, 8(2): 205–214. doi: 10.12000/JR18121
  • 加载中
图(18)
计量
  • 文章访问数:  8454
  • HTML全文浏览量:  2719
  • PDF下载量:  979
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-22
  • 修回日期:  2019-12-24
  • 网络出版日期:  2019-12-01

目录

    /

    返回文章
    返回