基于光学和SAR遥感图像融合的洪灾区域检测方法

王志豪 李刚 蒋骁

王志豪, 李刚, 蒋骁. 基于光学和SAR遥感图像融合的洪灾区域检测方法[J]. 雷达学报, 2020, 9(3): 539–553. doi: 10.12000/JR19095
引用本文: 王志豪, 李刚, 蒋骁. 基于光学和SAR遥感图像融合的洪灾区域检测方法[J]. 雷达学报, 2020, 9(3): 539–553. doi: 10.12000/JR19095
WANG Zhihao, LI Gang, and JIANG Xiao. Flooded area detection method based on fusion of optical and SAR remote sensing images[J]. Journal of Radars, 2020, 9(3): 539–553. doi: 10.12000/JR19095
Citation: WANG Zhihao, LI Gang, and JIANG Xiao. Flooded area detection method based on fusion of optical and SAR remote sensing images[J]. Journal of Radars, 2020, 9(3): 539–553. doi: 10.12000/JR19095

基于光学和SAR遥感图像融合的洪灾区域检测方法

DOI: 10.12000/JR19095
基金项目: 国家自然科学基金(61790551, 61925106),民用航天十三五预研项目(D010305)
详细信息
    作者简介:

    王志豪(1994–),男,清华大学电子工程系在读硕士生,目前研究方向雷达遥感图像处理

    李 刚(1979–),男,2002年和2007年于清华大学电子系分别获得学士、博士学位,现为清华大学电子系教授、博士生导师,研究方向包括雷达成像、目标识别、稀疏信号处理、分布式信号处理等、信息融合等

    蒋 骁(1989–),男,2010年和2013年分别于北京邮电大学通信工程系和清华大学电子工程系获得学士、硕士学位。现为清华大学电子工程系在读博士研究生。研究方向包括遥感图像融合与变化检测

    通讯作者:

    李刚 gangli@tsinghua.edu.cn

  • 责任主编:杨文 Corresponding Editor: YANG Wen
  • 中图分类号: TN959.3

Flooded Area Detection Method Based on Fusion of Optical and SAR Remote Sensing Images

Funds: The National Natural Science Foundation of China (61790551 and 61925106), Civil Space Advance Research Program of China (D010305)
More Information
  • 摘要: 基于光学和合成孔径雷达(SAR)图像融合的洪灾区域检测方法可以全天候、高时效地检测洪灾区域。由于SAR图像中存在大量随机分布的相干斑噪声,传统洪灾区域检测方法的检测结果存在较高的虚警率。该文在模糊C均值聚类方法(FCM)的基础上提出了分级聚类算法(H-FCM),该方法将洪灾后的SAR图像与洪灾前的光学图像融合。基于融合图像,该方法利用提出的分级聚类模型获得洪灾区域的初步检测结果。此外,该算法在利用所提出的区域生长算法获得洪灾前河流位置后,将其作为初步检测结果的空间约束,进一步筛除疑似洪灾区域,并显著地提升了检测性能。该文的实验数据包括1999年英国格洛斯特洪灾前后的遥感图像和2019年中国南昌洪灾前后的遥感图像。通过对比实验,H-FCM算法的有效性得到验证。

     

  • 图  1  利奇马台风的GF4图像(资源卫星中心)

    Figure  1.  The GF4 image of Typhoon Lekima (Resource Satellite Centre)

    图  2  利奇马台风的GF3图像(资源卫星中心)

    Figure  2.  The GF3 image of Typhoon Lekima (Resource Satellite Centre)

    图  3  典型地物的光谱特征曲线[23]

    Figure  3.  Spectral characteristic curves of typical features[23]

    图  4  洪灾后的SAR图像Ea[10]

    Figure  4.  SAR image Ea after the flood[10]

    图  5  洪灾前的近红外波段影像Ei[10]

    Figure  5.  Near-infrared image Ei before the flood[10]

    图  6  方向矩阵Jd1(向下)

    Figure  6.  Direction matrix Jd1(down)

    图  7  方向矩阵Jd2(向上)

    Figure  7.  Direction matrix Jd2(up)

    图  8  方向矩阵Jd3(向左)

    Figure  8.  Direction matrix Jd3(left)

    图  9  方向矩阵Jd4(向右)

    Figure  9.  Direction matrix Jd4(right)

    图  10  第2类阈值图Pt

    Figure  10.  Threshold graph Pt

    图  11  4连通区域的定义

    Figure  11.  Definition of four-connected regions

    图  12  初始生长点位置

    Figure  12.  Initial growth point location

    图  13  初步生长结果

    Figure  13.  Preliminary growth results

    图  14  道路的识别结果

    Figure  14.  Road recognition results

    图  15  洪灾前的河流位置Eb

    Figure  15.  River location Eb before the flood

    图  16  融合后的灾后SAR图像Fu

    Figure  16.  Fusion post-disaster SAR image Fu

    图  17  聚类模型Gm7

    Figure  17.  Clustering model Gm7

    图  18  聚类模型的稀疏度分析

    Figure  18.  Analysis of sparsity of clustering model

    图  19  初步聚类结果Gr7

    Figure  19.  Preliminary clustering results Gr7

    图  20  洪灾区域空间约束曲线

    Figure  20.  Spatial constraint curve of flooded area

    图  21  最终检测结果FF

    Figure  21.  Final experimental result FF

    图  22  洪灾后的NDVI图像[10]

    Figure  22.  NDVI images after the flood[10]

    图  23  人工标注的真值图

    Figure  23.  Manually labeled truth map

    图  24  像素值分布三维图

    Figure  24.  3-D map of the distribution of pixel values

    图  25  Ea的边缘轮廓

    Figure  25.  Edge profile of Ea

    图  26  4种算法的洪灾区域检测结果

    Figure  26.  Detection results of flooded area based on four algorithms

    图  27  人工标注的洪灾区域

    Figure  27.  Manually labeled flooded areas

    图  28  洪灾前后哨兵1,哨兵2数据

    Figure  28.  Sentinel 1, 2 data before and after flood

    图  29  4种算法的洪灾区域检测结果

    Figure  29.  Detection results of flooded area based on four algorithms

    图  30  RL滤波后4种算法的洪灾区域检测结果

    Figure  30.  Detection results of flooded area based on four algorithms after RL filtering

    表  1  FCM算法

    Table  1.   FCM algorithm

     (1) 给定聚类中心数目c,隶属度因子m,迭代次数t
     (2) 初始化和为1的隶属度矩阵U
     (3) 由式(4)确定c个聚类中心Ci
     (4) 计算目标函数J的值;
     (5) 将Ci代入式(3),更新隶属度矩阵U
     (6)重复步骤(3)—步骤(5),迭代次数为t
    下载: 导出CSV

    表  2  区分河流和道路的区域生长算法

    Table  2.   Region growing algorithm to distinguish rivers and roads

     (1) 应用FCM算法获得图像的八分类聚类中心C
     (2) 获得阈值矩阵T,并获得小于T2的二值图Pt
     (3) 通过卷积消除Pt中的区块噪声,并确定初始生长点;
     (4) 设定初始生长方向矩阵$ {\bf{J}}{{\bf{d}}_i},i = 1,2,3,4$,如图6图9
     (5) 每次迭代都以初始生长点为中心,取5×5区域中的最小值点
       作为下一个生长点,按同一方向迭代直至生长到全图边界;
     (6) 将每个方向的生长结果累加,得到初步生长结果;
     (7) 利用霍夫变换[26]提取初步生长结果中的道路;
     (8) 将初步生长结果去除道路部分,获得河流位置。
    下载: 导出CSV

    表  3  融合后SAR图像洪灾区域的检测结果

    Table  3.   Detection results of flooded area in fusioned SAR image

    方法H-FCMWASnakeH-Kmeans
    Righta0.89460.43460.67570.8837
    Missa0.15230.06800.16070.1519
    Wra0.25130.70010.50700.2634
    Kappa0.60920.18400.29640.5837
    Time(s)51.982.722.5373.27
    Iter(次)251125
    下载: 导出CSV

    表  4  融合后SAR图像洪灾区域的检测结果

    Table  4.   Detection results of flooded area in the fusioned SAR image

    方法H-FCMWASnakeH-Kmeans
    Righta0.94140.62300.64260.9391
    Missa0.25200.05550.06080.2434
    Wra0.28860.46900.45180.2836
    Kappa0.69110.26290.27490.6848
    Time(s)30.592.823.1479.13
    Iter(次)251125
    下载: 导出CSV

    表  5  RL滤波后SAR图像的洪灾区域检测结果

    Table  5.   Detection results of flooded area in the SAR image after RL filtering

    方法RL_H-FCMRL_WARL_SnakeRL_H-Kmeans
    Righta0.89960.43910.76150.8899
    Missa0.17500.06600.25980.1351
    Wra0.26530.69330.49540.2418
    Kappa0.61470.18630.34600.6032
    Time(s)646.04593.72593.59745.62
    Iter(次)251125
    下载: 导出CSV
  • [1] SABINS F F. Remote sensing for mineral exploration[J]. Ore Geology Reviews, 1999, 14(3/4): 157–183. doi: 10.1016/S0169-1368(99)00007-4
    [2] 解金卫, 李真芳, 王帆, 等. 基于幅相不一致准则的建筑物SAR层析成像[J]. 雷达学报, 2020, 9(1): 154–165. doi: 12000/JR19062.

    XIE Jinwei, LI Zhenfang, WANG Fan, et al. SAR tomography imaging for buildings using an inconsistency criterion for amplitude and phase[J]. Journal of Radars, 2020, 9(1): 154–165, doi: 12000/JR19062.
    [3] BERNI J A J, ZARCO-TEJADA P J, SUÁREZ L, et al. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3): 722–738. doi: 10.1109/TGRS.2008.2010457
    [4] SAWAYA K E, OLMANSON L G, HEINERT N J, et al. Extending satellite remote sensing to local scales: Land and water resource monitoring using high-resolution imagery[J]. Remote Sensing of Environment, 2003, 88(1/2): 144–156. doi: 10.1016/j.rse.2003.04.006
    [5] DONG Laigen and SHAN Jie. A comprehensive review of earthquake-induced building damage detection with remote sensing techniques[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 84: 85–99. doi: 10.1016/j.isprsjprs.2013.06.011
    [6] SANYAL J and LU X X. Application of remote sensing in flood management with special reference to monsoon Asia: A review[J]. Natural Hazards, 2004, 33(2): 283–301. doi: 10.1023/B:NHAZ.0000037035.65105.95
    [7] 吴一全, 王志来. 基于联合稀疏表示的复Contourlet域SAR图像与红外图像融合(英文)[J]. 雷达学报, 2017, 6(4): 349–358. doi: 10.12000/JR17019

    WU Yiquan and WANG Zhilai. SAR and infrared image fusion in complex contourlet domain based on joint sparse representation[J]. Journal of Radars, 2017, 6(4): 349–358. doi: 10.12000/JR17019
    [8] BELL J R, SCHULTZ L A, JONES M, et al. Using optical remote sensing and synthetic aperture radar for near-real-time response to the central U.S. flooding in April-May 2017[C]. The 98th 2018 American Meteorological Society Meeting, Austin, Texas, 2018.
    [9] KUSSUL N, SHELESTOV A, and SKAKUN S. Flood Monitoring from SAR Data[M]. KOGAN F, POWELL A, and FEDOROV O. Use of Satellite and In-Situ Data to Improve Sustainability. Dordrecht: Springer, 2011: 19-29. doi: 10.1007/978-90-481-9618-0_3.
    [10] LIU Zhunga, ZHANG Li, LI Gang, et al. Change detection in heterogeneous remote sensing images based on the fusion of pixel transformation[C]. The 2017 20th International Conference on Information Fusion, Xi’an, China, 2017: 1–6. doi: 10.23919/ICIF.2017.8009656.
    [11] LIU Zhunga, LI Gang, MERCIER G, et al. Change detection in heterogenous remote sensing images via homogeneous pixel transformation[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1822–1834. doi: 10.1109/TIP.2017.2784560
    [12] 李丹, 吴保生, 陈博伟, 等. 基于卫星遥感的水体信息提取研究进展与展望[J/OL]. 清华大学学报: 自然科学版. http://kns.cnki.net/kcms/detail/detail.aspx?doi=10.16511/j.cnki.qhdxxb.2019.22.038, 2020.

    LI Dan, WU Baosheng, CHEN Bowei, et al. Review of water body information extraction based on satellite remote sensing[J/OL]. Journal of Tsinghua University: Science and Technology. http://kns.cnki.net/kcms/detail/detail.aspx?doi=10.16511/j.cnki.qhdxxb.2019.22.038, 2020.
    [13] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62–66. doi: 10.1109/TSMC.1979.4310076
    [14] 窦建方, 陈鹰, 翁玉坤. 基于序列非线性滤波SAR影像水体自动提取[J]. 测绘通报, 2008, (9): 37–39, 45.

    DOU Jianfang, CHEN Ying, and WENG Yukun. Automatic water body extraction from SAR images based on sequence non-linear filter[J]. Bulletin of Surveying and Mapping, 2008(9): 37–39, 45.
    [15] LEE J S and JURKEVICH I. Coastline detection and tracing in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(4): 662–668. doi: 10.1109/TGRS.1990.572976
    [16] DESCOMBES X, MOCTEZUMA M, MAÎTRE H, et al. Coastline detection by a Markovian segmentation on SAR images[J]. Signal Processing, 1996, 55(1): 123–132. doi: 10.1016/S0165-1684(96)00125-9
    [17] 滑文强, 王爽, 郭岩河, 等. 基于邻域最小生成树的半监督极化SAR图像分类方法[J]. 雷达学报, 2019, 8(4): 458–470. doi: 10.12000/JR18104

    HUA Wenqiang, WANG Shuang, GUO Yanhe, et al. Semi-supervised PolSAR image classification based on the neighborhood minimum spanning tree[J]. Journal of Radars, 2019, 8(4): 458–470. doi: 10.12000/JR18104
    [18] 赵娟萍, 郭炜炜, 柳彬, 等. 基于概率转移卷积神经网络的含噪标记SAR图像分类[J]. 雷达学报, 2017, 6(5): 514–523. doi: 10.12000/JR16140

    ZHAO Juanping, GUO Weiwei, LIU Bin, et al. Convolutional neural network-based SAR image classification with noisy labels[J]. Journal of Radars, 2017, 6(5): 514–523. doi: 10.12000/JR16140
    [19] HARTIGAN J A and WONG M A. Algorithm AS 136: A k-means clustering algorithm[J]. Journal of the Royal Statistical Society. Series C (Applied Statistics) , 1979, 28(1): 100–108.
    [20] BEZDEK J C, EHRLICH R, and FULL W. FCM: The fuzzy c-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2/3): 191–203. doi: 10.1016/0098-3004(84)90020-7
    [21] VANNOTE R L, MINSHALL G W, CUMMINS K W, et al. The river continuum concept[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1980, 37(1): 130–137. doi: 10.1139/f80-017
    [22] 方佳佳, 王烜, 孙涛, 等. 河流连通性及其对生态水文过程影响研究进展[J]. 水资源与水工程学报, 2018, 29(2): 19–26. doi: 10.11705/j.issn.1672-643X.2018.02.04

    FANG Jiajia, WANG Xuan, SUN Tao, et al. Review of research on river connectivity and its impact on eco -hydrological process[J]. Journal of Water Resources and Water Engineering, 2018, 29(2): 19–26. doi: 10.11705/j.issn.1672-643X.2018.02.04
    [23] 童庆禧, 田国良. 中国典型地物波谱及其特征分析[M]. 北京: 科学出版社, 1990.

    TONG Qingxi and TIAN Guoliang. Spectra and Analysis of Typical Earth Objects of China[M]. Beijing: Science Press, 1990.
    [24] CURCIO J A and PETTY C C. The near infrared absorption spectrum of liquid water[J]. Journal of the Optical Society of America, 1951, 41(5): 302–304. doi: 10.1364/JOSA.41.000302
    [25] 章毓晋. 图像工程[M]. 4版. 北京: 清华大学出版社, 2018: 51–53.

    ZHANG Yujin. Image Engineering[M]. 4th ed. Beijing: Tsinghua University Press, 2018: 51–53.
    [26] DUDA R O and HART P E. A Generalized Hough Transformation for Detecting Lines in Pictures[M]. Artificial Intelligence Group, SRI International, 1970.
    [27] XU Hanqiu. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006, 27(14): 3025–3033. doi: 10.1080/01431160600589179
    [28] LI Gang and BURKHOLDER R J. Hybrid matching pursuit for distributed through-wall radar imaging[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1701–1711. doi: 10.1109/TAP.2015.2398115
    [29] WANG Xueqian, LI Gang, QUAN Chen, et al. Distributed detection of sparse stochastic signals with quantized measurements: The generalized Gaussian case[J]. IEEE Transactions on Signal Processing, 2019, 67(18): 4886–4898. doi: 10.1109/TSP.2019.2932884
    [30] BATES P D, HORRITT M S, ARONICA G, et al. Bayesian updating of flood inundation likelihoods conditioned on flood extent data[J]. Hydrological Processes, 2004, 18(17): 3347–3370. doi: 10.1002/hyp.1499
    [31] MCEWEN L J, KRAUSE F, JONES O, et al. Sustainable flood memories, informal knowledge and the development of community resilience to future flood risk[J]. WIT Transactions on Ecology and the Environment, 2012, 159(12): 253–264. doi: 10.2495/FRIAR120211
    [32] RAMBABU C, CHAKRABARTI I, and MAHANTA A. Flooding-based watershed algorithm and its prototype hardware architecture[J]. IEE Proceedings-Vision, Image and Signal Processing, 2004, 151(3): 224–234. doi: 10.1049/ip-vis:20040397
    [33] DE ROO A, VAN DER KNIJFF J, HORRITT M, et al. Assessing flood damages of the 1997 Oder flood and the 1995 Meuse flood[C]. The 2nd International Symposium on Operationalization of Remote Sensing, Enschede, The Netherlands, 1999: 16–20.
    [34] LEE J S. Refined filtering of image noise using local statistics[J]. Computer Graphics and Image Processing, 1981, 15(4): 380–389. doi: 10.1016/S0146-664X(81)80018-4
  • 加载中
图(30) / 表(5)
计量
  • 文章访问数:  5156
  • HTML全文浏览量:  2511
  • PDF下载量:  690
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-05
  • 修回日期:  2020-02-18
  • 网络出版日期:  2020-06-01

目录

    /

    返回文章
    返回