基于空间变迹滤波旁瓣抑制与有序统计恒虚警率的舰船检测算法

黄寅礼 孙路 郭亮 孙光才 邢孟道 杨军 胡以华

黄寅礼, 孙路, 郭亮, 等. 基于空间变迹滤波旁瓣抑制与有序统计恒虚警率的舰船检测算法[J]. 雷达学报, 2020, 9(2): 335–342. doi: 10.12000/JR19082
引用本文: 黄寅礼, 孙路, 郭亮, 等. 基于空间变迹滤波旁瓣抑制与有序统计恒虚警率的舰船检测算法[J]. 雷达学报, 2020, 9(2): 335–342. doi: 10.12000/JR19082
HUANG Yinli, SUN Lu, GUO Liang, et al. Ship detection algorithm based on spatially variant apodization sidelobe suppression and order statistic-constant false alarm rate[J]. Journal of Radars, 2020, 9(2): 335–342. doi: 10.12000/JR19082
Citation: HUANG Yinli, SUN Lu, GUO Liang, et al. Ship detection algorithm based on spatially variant apodization sidelobe suppression and order statistic-constant false alarm rate[J]. Journal of Radars, 2020, 9(2): 335–342. doi: 10.12000/JR19082

基于空间变迹滤波旁瓣抑制与有序统计恒虚警率的舰船检测算法

DOI: 10.12000/JR19082
基金项目: 国家自然科学基金(61001210),国家科技攻关计划(2017YFC1405600),陕西省自然科学基金(2017JQ6021),中央高校基本科研专项资金(JB180213),脉冲功率激光技术国家重点实验室开放研究基金(SKL2018KF06),国防科技大学科研计划项目基金(ZK180102)
详细信息
    作者简介:

    黄寅礼(1995–),男,硕士生,研究方向为合成孔径雷达图像处理

    郭 亮(1983–),男,博士,教授,研究方向为激光雷达、SAR成像等

    孙光才(1984–),男,博士,副教授,研究方向为合成孔径雷达成像、动目标检测和无源定位等

    邢孟道(1975–),男,博士,教授,研究方向为雷达成像和目标检测与识别等

    杨 军(1984–),男,博士,讲师,研究方向为星载合成孔径雷达等

    胡以华(1962–),男,博士,研究员,研究方向为空间信息获取与处理技术、光电信息与图像处理等

    通讯作者:

    郭亮 lguo@mail.xidian.edu.cn

  • 责任主编:张增辉 Corresponding Editor: ZHANG Zenghui
  • 中图分类号: TP751

Ship Detection Algorithm Based on Spatially Variant Apodization Sidelobe Suppression and Order Statistic-Constant False Alarm Rate

Funds: The National Natural Science Foundation of China (61001210), The National Key R&D Program of China (2017YFC1405600), The Natural Science Fundamental of Shaanxi Province (2017JQ6021), The Fundamental Research Funds for the Central Universities (JB180213), Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology (SKL2018KF06), The Research Plan Project of National University of Defense Technology (ZK180102)
More Information
  • 摘要: 由于合成孔径雷达(SAR)特殊的成像机制,导致了SAR图像上出现了旁瓣效应(SVA)。针对舰船目标检测过程中,旁瓣效应改变了强反射目标的形状导致的定位困难与定位错误问题,该文提出了一种基于空间变迹滤波与有序统计恒虚警率(OS-CFAR)的舰船检测算法。该算法将空间变迹滤波算法运用到复图像数据中,针对目标检测要求的实时性问题进行算法改进,通过全局CFAR只对潜在目标点进行旁瓣抑制而忽略对舰船检测无意义的大量背景点,在抑制旁瓣的同时减少了算法运算量。然后采用非线性的OS-CAFR算法对旁瓣抑制后的图像进行目标检测,并且采用形态学膨胀运算,弥补SVA算法可能造成的像素点幅值错误降低的问题。最后利用高分三号(GF-3)的实测数据进行验证,通过对比有无使用该文算法的结果的图像对比度与检查目标个数,体现了算法的有效性。

     

  • 图  1  已排序数组

    Figure  1.  The sorted array

    图  2  旁瓣抑制流程图

    Figure  2.  The flowchart of sidelobe suppression

    图  3  膨胀操作示意图

    Figure  3.  The diagram of the dilation

    图  4  实验图像1的处理过程

    Figure  4.  The process of Image1 processing

    图  5  实验图像2的处理过程

    Figure  5.  The process of Image2 processing

    图  6  实验图像3的处理过程

    Figure  6.  The process of Image3 processing

    表  1  实验图像参数

    Table  1.   The parameters of test images

    Test imagesPolarizationResolution(m)size
    Image1HH1600$ \times $200
    Image2HH1700$ \times $350
    Image3HH11300$ \times $600
    下载: 导出CSV

    表  2  实验图像结果

    Table  2.   The results of test images

    Test imagesContrast without SVAContrast with SVADetected number without SVADetected number with SVA
    Image11.59441.9767334
    Image21.26191.74744417
    Image32.05332.318027140
    下载: 导出CSV
  • [1] FAWZY Z M, EL-SAMIE F E A, and FOUAD M. Processing of synthetic aperture radar data using frequency modulated signals[J]. Wireless Personal Communications, 2019, 107(2): 1061–1076. doi: 10.1007/s11277-019-06317-x
    [2] KERR D E. Propagation of Short Radio Waves[M]. New York: McGraw-Hill, 1951.
    [3] MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301
    [4] HARRIS F J. On the use of windows for harmonic analysis with the discrete Fourier transform[J]. Proceedings of the IEEE, 1978, 66(1): 51–83. doi: 10.1109/PROC.1978.10837
    [5] STANKWITZ H C, DALLAIRE R J, and FIENUP J R. Nonlinear apodization for sidelobe control in SAR imagery[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(1): 267–279. doi: 10.1109/7.366309
    [6] 王一丁, 纪慧波, 洪峻. 变量切趾技术在SAR/ISAR图像处理中的应用[J]. 电子与信息学报, 2003, 25(12): 1622–1627.

    WANG Yiding, JI Huibo, and HONG Jun. Application of apodization method in SAR/ISAR processing[J]. Journal of Electronics &Information Technology, 2003, 25(12): 1622–1627.
    [7] SMITH B H. Generalization of spatially variant apodization to noninteger nyquist sampling rates[J]. IEEE Transactions on Image Processing, 2000, 9(6): 1088–1093. doi: 10.1109/83.846250
    [8] CASTILLO-RUBIO C, LLORENTE-ROMANO S, and BURGOS-GARCIA M. Robust SVA method for every sampling rate condition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 571–580. doi: 10.1109/TAES.2007.4285354
    [9] NI Chong, WANG Yanfei, XU Xianghui, et al. A SAR sidelobe suppression algorithm based on modified spatially variant apodization[J]. Science China Technological Sciences, 2010, 53(9): 2542–2551. doi: 10.1007/s11431-010-4035-z
    [10] LIU Min, LI Zhou, and LIU Lu. A novel sidelobe reduction algorithm based on two-dimensional sidelobe correction using D-SVA for squint SAR images[J]. Sensors, 2018, 18(3): 783. doi: 10.3390/s18030783
    [11] El-DARYMLI K, MCGUIRE P, POWER D, et al. Target detection in synthetic aperture radar imagery: A state-of-the-art survey[J]. Journal of Applied Remote Sensing, 2013, 7(7): 071598.
    [12] ZHAO Bo, CHEN Li, ZHOU Xiaoyang, et al. Target detection from SAR images based on wavelet transform de-noise and improved CFAR[C]. Proceedings of SPIE 7495, MIPPR 2009: Automatic Target Recognition and Image Analysis, Yichang, China, 2009: 749539.
    [13] KAPLAN L M. Improved SAR target detection via extended fractal features[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 436–451. doi: 10.1109/7.937460
    [14] XING X W, CHEN Z L, ZOU H X, et al. A fast algorithm based on two-stage CFAR for detecting ships in SAR images[C]. The 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Shanxi, China, 2010.
    [15] SMITH M E and VARSHNEY P K. VI-CFAR: A novel CFAR algorithm based on data variability[C]. 1997 IEEE National Radar Conference, Syracuse, USA, 1997.
    [16] GANDHI P P and KASSAM S A. Analysis of CFAR processors in nonhomogeneous background[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 427–445. doi: 10.1109/7.7185
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  5127
  • HTML全文浏览量:  1900
  • PDF下载量:  655
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-10
  • 修回日期:  2019-12-09
  • 网络出版日期:  2020-04-01

目录

    /

    返回文章
    返回