基于长合成孔径的辐射源成像定位算法

王裕旗 孙光才 杨军 邢孟道 杨小牛 保铮

王裕旗, 孙光才, 杨军, 等. 基于长合成孔径的辐射源成像定位算法[J]. 雷达学报, 2020, 9(1): 185–194. doi: 10.12000/JR19080
引用本文: 王裕旗, 孙光才, 杨军, 等. 基于长合成孔径的辐射源成像定位算法[J]. 雷达学报, 2020, 9(1): 185–194. doi: 10.12000/JR19080
WANG Yuqi, SUN Guangcai, YANG Jun, et al. Passive localization algorithm for radiation source based on long synthetic aperture[J]. Journal of Radars, 2020, 9(1): 185–194. doi: 10.12000/JR19080
Citation: WANG Yuqi, SUN Guangcai, YANG Jun, et al. Passive localization algorithm for radiation source based on long synthetic aperture[J]. Journal of Radars, 2020, 9(1): 185–194. doi: 10.12000/JR19080

基于长合成孔径的辐射源成像定位算法

doi: 10.12000/JR19080
基金项目: 国家杰出青年自然基金(61825105)
详细信息
    作者简介:

    王裕旗(1994–),男,博士生,研究方向为合成孔径雷达成像和合成孔径无源定位。E-mail: xdwangyuqi@163.com

    孙光才(1984–),男,湖北孝感人,博士,副教授,研究方向为合成孔径雷达成像、动目标检测和合成孔径无源定位。E-mail: gcsun@xidian.edu.cn

    杨 军(1984–),男,博士,讲师,研究方向为星载合成孔径雷达。E-mail: yangjun_kx@163.com

    邢孟道(1975–),男,博士,教授,主要研究方向为雷达成像技术、稀疏信号处理、激光合成孔径成像、微波光子合成孔径成像等。E-mail: xmd@xidian.edu.cn

    杨小牛(1961–),男,中国工程院院士,主要研究方向为通信信号处理与分析,软件无线电等

    保 铮(1927–),男,中国科学院院士,主要研究方向为数字信号处理、时空2维信号处理、雷达成像等

    通讯作者:

    孙光才 gcsun@xidian.edu.cn

  • 中图分类号: TN958

Passive Localization Algorithm for Radiation Source Based on Long Synthetic Aperture

Funds: The National Science Fund for Distinguished Young Scholars (61825105)
More Information
  • 摘要: 考虑到单平台测角的定位精度随目标的距离增加而下降、远距离处的方位定位精度有待提高的问题,该文提出了一种基于长合成孔径的辐射源定位算法。该算法将合成孔径成像的概念引入到辐射源无源定位中,通过平台的移动形成长的虚拟孔径,以合成孔径雷达的方式处理数据,获得很高的方位定位精度。对于单频辐射源,接收信号在方位上等效为线性调频信号,其调频率与辐射源的距离成反比,通过距离搜索和方位聚焦的方法在距离-方位域完成信号聚焦,直接获得辐射源2维成像定位结果。针对宽波束侦察的特点,分析了低采样率下调频率距离-方位的耦合关系,并提出了信号角度估计和2维成像定位的方法。理论推导和实测数据处理结果验证了该定位算法的有效性。

     

  • 图  1  合成孔径定位几何模型

    Figure  1.  Localization geometry model

    图  2  采集数据的利用方式

    Figure  2.  Data usage diagram

    图  3  不同发射频率,不同垂直距离对应的点散布函数

    Figure  3.  PSF for different frequencies and different ranges

    图  4  单频连续波辐射源合成孔径侦察算法流程

    Figure  4.  Flow chart of proposed algorithm for single frequency signal

    图  5  多辐射源同时定位的结果

    Figure  5.  Localization result of multiple sources

    图  6  不同信噪比下定位的均方根误差

    Figure  6.  RMSE of different SNR

    图  7  QPSK信号频谱

    Figure  7.  QPSK signal spectrum

    图  8  相位补偿后QPSK信号的频谱

    Figure  8.  Spectrum after phase compensation

    图  9  2维重排信号的方位谱

    Figure  9.  Azimuth spectrum of two-dimensional signal

    图  10  距离位置定位的结果

    Figure  10.  Range localization result

    图  11  距离位置定位结果局部放大

    Figure  11.  Enlarged view of range localization result

    图  12  辐射源的频率和方位位置

    Figure  12.  Frequency and azimuth location

    图  13  测角定位的结果

    Figure  13.  Localization result of angle measurement

    表  1  定位误差对比(km)

    Table  1.   Comparison of localization errors (km)

    测角定位误差合成孔径定位误差
    27.4776.214
    23.4508.262
    14.0093.163
    34.9067.276
    下载: 导出CSV
  • [1] 赵国庆. 雷达对抗原理[M]. 西安: 西安电子科技大学出版社, 1999.

    ZHAO Guoqing. Principle of Radar Countermeasure[M]. Xi’an: Xidian University Press, 1999.
    [2] 杨小牛, 楼才义, 徐建良. 软件无线电原理与应用[M]. 北京: 电子工业出版社, 2001.

    YANG Xiaoniu, LOU Caiyi, and XU Jianliang. Software Radio Principles and Applications[M]. Beijing: Publishing House of Electronics Industry, 2001.
    [3] 胡来招. 雷达侦察接收机设计[M]. 北京: 国防工业出版社, 2000.

    HU Laizhao. Design for Radar Reconnaissance Receivers[M]. Beijing: National Defense Industry Press, 2000.
    [4] 胡来招. 关于定点侦察的思考[J]. 通信对抗, 2009, (4): 3–5, 9.

    HU Laizhao. Considerations on position-based reconnaissance[J]. Communication Countermeasures, 2009, (4): 3–5, 9.
    [5] ZHOU Longjian, ZHU Weiqiang, LUO Jingqing, et al. Direct positioning maximum likelihood estimator using TDOA and FDOA for coherent short-pulse radar[J]. IET Radar, Sonar & Navigation, 2017, 11(10): 1505–1511. doi: 10.1049/iet-rsn.2016.0437
    [6] ZHANG Huichuan, SUN Zhengbo, PENG Huafeng, et al. A DTO and DFO estimation algorithm of broadband frequency-hopping pulse signal[C]. The 2012 2nd International Conference on Computer Science and Network Technology, Changchun, China, 2012: 188–192. doi: 10.1109/ICCSNT.2012.6525918.
    [7] 张杰, 蒋建中, 郭军利. 基于约束加权最小二乘的多站无源定位[J]. 信号处理, 2015, 31(1): 119–126. doi: 10.3969/j.issn.1003-0530.2015.01.017

    ZHANG Jie, JIANG Jianzhong, and GUO Junli. Multi-station passive localization based on CWLS algorithm[J]. Journal of Signal Processing, 2015, 31(1): 119–126. doi: 10.3969/j.issn.1003-0530.2015.01.017
    [8] 秦兆涛, 王俊, 魏少明, 等. 基于目标高度先验信息的多站时差无源定位方法[J]. 电子与信息学报, 2018, 40(9): 2219–2226. doi: 10.11999/JEIT171231

    QIN Zhaotao, WANG Jun, WEI Shaoming, et al. Passive localization using TDOA measurements from multiple sensors based on priori knowledge of target altitude[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2219–2226. doi: 10.11999/JEIT171231
    [9] 房嘉奇, 冯大政, 李进. 稳健收敛的时差频差定位技术[J]. 电子与信息学报, 2015, 37(4): 798–803. doi: 10.11999/JEIT140560

    FANG Jiaqi, FENG Dazheng, and LI Jin. A robustly convergent algorithm for source localization using time difference of arrival and frequency difference of arrival[J]. Journal of Electronics &Information Technology, 2015, 37(4): 798–803. doi: 10.11999/JEIT140560
    [10] 陆安南, 杨小牛. 最小相位误差单星无源定位法[J]. 上海航天, 2007, 24(3): 6–9. doi: 10.3969/j.issn.1006-1630.2007.03.002

    LU Annan and YANG Xiaoniu. Passive location with minimizing phase difference error by single satellite[J]. Aerospace Shanghai, 2007, 24(3): 6–9. doi: 10.3969/j.issn.1006-1630.2007.03.002
    [11] 莫成坤, 陈树新, 吴昊, 等. 基于角度信息的递推最小二乘无源定位算法[J]. 计算机测量与控制, 2014, 22(9): 2863–2866. doi: 10.3969/j.issn.1671-4598.2014.09.046

    MO Chengkun, CHEN Shuxin, WU Hao, et al. Recursion least-squares passive location algorithm based on angle information[J]. Computer Measurement &Control, 2014, 22(9): 2863–2866. doi: 10.3969/j.issn.1671-4598.2014.09.046
    [12] 游屈波, 吴耀云, 胡飞, 等. 基于机载单站双航段联合估计的纯方位定位跟踪算法[J]. 电子信息对抗技术, 2019, 34(5): 28–31. doi: 10.3969/j.issn.1674-2230.2019.05.007

    YOU Qubo, WU Yaoyun, HU Fei, et al. Bearing-only target location and tracking algorithm based on joint estimation with two flight segments of single observer[J]. Electronic Information Warfare Technology, 2019, 34(5): 28–31. doi: 10.3969/j.issn.1674-2230.2019.05.007
    [13] 李腾, 郭福成, 姜文利. 星载干涉仪无源定位新方法及其误差分析[J]. 国防科技大学学报, 2012, 34(3): 164–170. doi: 10.3969/j.issn.1001-2486.2012.03.032

    LI Teng, GUO Fucheng, and JIANG Wenli. A novel method for satellite-borne passive localization using interferometer and its error analysis[J]. Journal of National University of Defense Technology, 2012, 34(3): 164–170. doi: 10.3969/j.issn.1001-2486.2012.03.032
    [14] 石荣, 阎剑, 张聪. 干涉仪相位差测量精度及其影响因素分析[J]. 航天电子对抗, 2013, 29(2): 35–38. doi: 10.3969/j.issn.1673-2421.2013.02.011

    SHI Rong, YAN Jian, and ZHANG Cong. Analysis on precision and infection factors about phase difference measurement for interferometer[J]. Aerospace Electronic Warfare, 2013, 29(2): 35–38. doi: 10.3969/j.issn.1673-2421.2013.02.011
    [15] 王克让, 李娟慧, 朱晓丹, 等. 提高相位干涉仪测角精度新方法[J]. 航天电子对抗, 2017, 33(4): 7–10. doi: 10.16328/j.htdz8511.2017.04.003

    WANG Kerang, LI Juanhui, ZHU Xiaodan, et al. A novel improving angle accuracy method for phase interferometer[J]. Aerospace Electronic Warfare, 2017, 33(4): 7–10. doi: 10.16328/j.htdz8511.2017.04.003
    [16] 戴幻尧, 申绪涧, 乔会东, 等. 基于极化误差的干涉仪测角性能建模与仿真[J]. 计算机仿真, 2013, 30(10): 237–240. doi: 10.3969/j.issn.1006-9348.2013.10.054

    DAI Huanyao, SHEN Xujian, QIAO Huidong, et al. Interferometer angle measurement performance modeling and simulation based on polarization error[J]. Computer Simulation, 2013, 30(10): 237–240. doi: 10.3969/j.issn.1006-9348.2013.10.054
    [17] 郑坤, 汪兵. 同时同频多源信号对干涉仪测角的影响分析[J]. 电子信息对抗技术, 2018, 33(6): 1–5. doi: 10.3969/j.issn.1674-2230.2018.06.001

    ZHENG Kun and WANG Bing. Influences analysis on interferometer direction-finding of simultaneous multiple source signals under common-frequency[J]. Electronic Information Warfare Technology, 2018, 33(6): 1–5. doi: 10.3969/j.issn.1674-2230.2018.06.001
    [18] 许志伟, 王运锋, 张小琴. 基于只测向的机载单站定位技术[J]. 四川大学学报: 自然科学版, 2017, 54(2): 293–297.

    XU Zhiwei, WANG Yunfeng, and ZHANG Xiaoqin. Airborne single-station passive location technology only based on bearing method[J]. Journal of Sichuan University:Natural Science Edition, 2017, 54(2): 293–297.
    [19] 张敏, 冯道旺, 郭福成. 基于多普勒变化率的单星无源定位[J]. 航天电子对抗, 2009, 25(5): 11–13, 64. doi: 10.3969/j.issn.1673-2421.2009.05.004

    ZHANG Min, FENG Daowang, and GUO Fucheng. Passive localization by a single satellite based on Doppler rate-of-change[J]. Aerospace Electronic Warfare, 2009, 25(5): 11–13, 64. doi: 10.3969/j.issn.1673-2421.2009.05.004
    [20] 曹东波, 张敏, 姜文利. 单星多普勒变化率无源定位精度分析[J]. 航天电子对抗, 2010, 26(4): 1–4, 64. doi: 10.3969/j.issn.1673-2421.2010.04.001

    CAO Dongbo, ZHANG Min, and JIANG Wenli. Accuracy analysis for passive localization of a single satellite based on Doppler rate-of-change[J]. Aerospace Electronic Warfare, 2010, 26(4): 1–4, 64. doi: 10.3969/j.issn.1673-2421.2010.04.001
    [21] 谈欣荣, 高宪军, 李宝珠, 等. 一种基于多普勒频率变化率单站无源定位的改进跟踪滤波算法[J]. 电子设计工程, 2014, 22(8): 77–80. doi: 10.3969/j.issn.1674-6236.2014.08.024

    TAN Xinrong, GAO Xianjun, LI Baozhu, et al. An improved tracking filter algorithm of single observer passive localization based on Doppler changing rate[J]. Electronic Design Engineering, 2014, 22(8): 77–80. doi: 10.3969/j.issn.1674-6236.2014.08.024
    [22] 李华, 郭福成. 等高程运动假设的单星角度融合多普勒变化率跟踪方法[J]. 空间电子技术, 2018, 15(4): 41–48. doi: 10.3969/j.issn.1674-7135.2018.04.009

    LI Hua and GUO Fucheng. A fusion of angle and Doppler rate-of-changing based tracking method forconstant altitude moving target by single satellite[J]. Space Electronic Technology, 2018, 15(4): 41–48. doi: 10.3969/j.issn.1674-7135.2018.04.009
    [23] WALTER W G. Synthetic Aperture Radar and Electronic Warfare[M]. New York: Artech House, 1993.
    [24] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technology[M]. Beijing: Publishing House of Electronics Industry, 2005.
    [25] CUMMING I G and WONG F H. Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Norwood, UK: Artech House, Inc., 2005.
    [26] SUN Guangcai, XING Mengdao, XIA Xianggen, et al. Beam steering SAR data processing by a generalized PFA[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4366–4377. doi: 10.1109/TGRS.2012.2237407
    [27] SUN Guangcai, XING Mengdao, XIA Xianggen, et al. A unified focusing algorithm for several modes of SAR based on FrFT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3139–3155. doi: 10.1109/TGRS.2012.2212280
    [28] YANG Jun, SUN Guangcai, CHEN Jianlai, et al. A subaperture imaging scheme for wide azimuth beam airborne SAR based on modified RMA with motion compensation[C]. Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, Canada, 2014: 608–611. doi: 10.1109/IGARSS.2014.6946496.
    [29] LIU Baochang, WANG Tong, and BAO Zheng. Slant-range velocity estimation based on Small-FM-Rate chirp[J]. Signal Processing, 2008, 88(10): 2472–2482. doi: 10.1016/j.sigpro.2008.04.013
    [30] WU Yufeng, SUN Guangcai, XIA Xianggen, et al. An improved SAC algorithm based on the range-keystone transform for Doppler rate estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 741–745. doi: 10.1109/LGRS.2012.2220753
    [31] 孙光才, 周峰, 邢孟道, 等. 虚假场景SAR欺骗式干扰技术及实时性分析[J]. 西安电子科技大学学报, 2009, 36(5): 813–818, 866.

    SUN Guangcai, ZHOU Feng, XING Mengdao, et al. Deception-jamming technology against the SAR based on the deceptive scene and real-time analyses[J]. Journal of Xidian University:Natural Science, 2009, 36(5): 813–818, 866.
    [32] 刘亚波, 刘霖, 童智勇, 等. S波段高分辨宽幅SAR辐射定标及误差分析方法[J]. 电子与信息学报, 2019, 41(8): 1946–1951. doi: 10.11999/JEIT180983

    LIU Yabo, LIU Lin, TONG Zhiyong, et al. A radiometric calibration and error analysis method for HWRS SAR at S-band[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1946–1951. doi: 10.11999/JEIT180983
    [33] 洪文, 王彦平, 林赟, 等. 新体制SAR三维成像技术研究进展[J]. 雷达学报, 2018, 7(6): 633–654. doi: 10.12000/JR18109

    HONG Wen, WANG Yanping, Lin Yun, et al. Research progress on three-dimensional SAR imaging techniques[J]. Journal of Radars, 2018, 7(6): 633–654. doi: 10.12000/JR18109
    [34] BORN M and WOLF E. Principles of Optics[M]. New York: Pergamon Press, 1959.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  3313
  • HTML全文浏览量:  1317
  • PDF下载量:  302
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-05
  • 修回日期:  2020-02-11
  • 网络出版日期:  2020-02-28

目录

    /

    返回文章
    返回