星载高分辨频率步进SAR成像技术

龙腾 丁泽刚 肖枫 王岩 李喆

龙腾, 丁泽刚, 肖枫, 等. 星载高分辨频率步进SAR成像技术[J]. 雷达学报, 2019, 8(6): 782–792. doi: 10.12000/JR19076
引用本文: 龙腾, 丁泽刚, 肖枫, 等. 星载高分辨频率步进SAR成像技术[J]. 雷达学报, 2019, 8(6): 782–792. doi: 10.12000/JR19076
LONG Teng, DING Zegang, XIAO Feng, et al. Spaceborne high-resolution stepped-frequency SAR imaging technology[J]. Journal of Radars, 2019, 8(6): 782–792. doi: 10.12000/JR19076
Citation: LONG Teng, DING Zegang, XIAO Feng, et al. Spaceborne high-resolution stepped-frequency SAR imaging technology[J]. Journal of Radars, 2019, 8(6): 782–792. doi: 10.12000/JR19076

星载高分辨频率步进SAR成像技术

doi: 10.12000/JR19076
基金项目: 国家杰出青年科学基金(61625103),国家自然科学基金(11833001)
详细信息
    作者简介:

    龙 腾(1968–),男,湖北黄陂人。北京理工大学教授、博士生导师。现任北京理工大学副校长、雷达技术研究所所长。研究方向为新体制雷达与实时信息处理。E-mail: longteng@bit.edu.cn

    丁泽刚(1980–),男,河南信阳人,博士。现担任北京理工大学研究员、博士生导师,主要研究方向为新体制雷达成像机理、成像处理和图像信息提取。E-mail: z.ding@bit.edu.cn

    肖 枫(1993–),男,内蒙古包头人。北京理工大学雷达技术研究所在读博士研究生,主要研究领域为多模式星载SAR成像技术、SAR运动补偿技术。E-mail: 1120646612@qq.com

    王 岩(1989–),男,河北沧州人。博士后,现担任北京理工大学副研究员、硕士生导师,主要研究方向为新体制雷达系统、成像、干涉和极化应用。E-mail: yan_wang@bit.edu.cn

    李 喆(1996–),男,河北任丘人。北京理工大学信息与电子学院硕士研究生,主要研究方向星载合成孔径雷达系统设计与成像。E-mail: 3120180770@bit.edu.cn

    通讯作者:

    龙腾 longteng@bit.edu.cn

    丁泽刚 z.ding@bit.edu.cn

  • 中图分类号: TN958

Spaceborne High-resolution Stepped-frequency SAR Imaging Technology

Funds: The National Science Foundation for Distinguished Young Scholars (61625103), The National Natural Science Foundation of China (11833001)
More Information
  • 摘要: 星载合成孔径雷达(SAR)是一种2维高分辨率微波成像雷达。它通过发射大带宽信号实现距离向高分辨,通过合成孔径技术实现方位向高分辨。随着人们对分辨率需求的不断提升,星载SAR正朝着分米级分辨率发展。一方面,受限于现有器件水平,可以通过频率步进技术实现大带宽信号发射,需要研究高精度子带拼接技术、子带间幅相误差对成像的影响与补偿技术;另一方面,受限于有限的波束宽度,可以使系统工作在聚束模式或滑聚模式实现长合成孔径,此时需研究轨道弯曲、“Stop-go”假设误差、电离层与对流层传输误差等非理想因素对成像的影响与补偿技术。因此,该文详细介绍了频率步进信号时序设计与子带拼接,研究星载高分辨率频率步进SAR成像算法与非理想因素补偿方法,最后给出成像算法的仿真验证和性能分析。

     

  • 图  1  子带并发

    Figure  1.  Simultaneously transmitted subpulses

    图  2  脉内子带串发

    Figure  2.  Sequential subpulses transmitted in PRT

    图  3  脉间子带串发

    Figure  3.  Sequential subpulses transmitted interpulse

    图  4  高分辨率星载SAR子带交替串发设计结果

    Figure  4.  Design result of subpulses transmitted alternatively for high resolution spaceborne SAR

    图  5  轨道弯曲引起的等效速度空变

    Figure  5.  Equivalent speed variance caused by curved orbit

    图  6  “Stop-go”误差引起的方位向偏移

    Figure  6.  Azimuth migration caused by stop-go error

    图  7  星载高分辨率SAR 100 s工作期间典型折射率下斜距误差的变化图

    Figure  7.  Range error variance of spaceborne high resolution SAR in typical refractive index during 100 s operation

    图  8  电离层导致的二次相位误差

    Figure  8.  Quadratic phase error caused by ionosphere error

    图  9  高分辨率滑动聚束星载SAR成像算法总流程

    Figure  9.  Flow chart of high resolution sliding spotlight spaceborne SAR imaging algorithm

    图  10  信号子带拼接前后对比

    Figure  10.  Stepped frequency subband signal and simulation result of synthetic bandwidth

    图  11  加入幅相误差的子带拼接结果

    Figure  11.  Compressed synthetic signal with amplitude errors and phase errors

    图  12  加入对流层误差的成像结果

    Figure  12.  Imaging result with troposphere error

    图  13  加入不同电离层误差的成像结果

    Figure  13.  Imaging results with different ionosphere errors

    图  14  加入不同大小DEM误差的成像结果

    Figure  14.  Imaging results with different DEM errors

    图  15  高分辨率滑动聚束星载SAR点阵目标成像结果图

    Figure  15.  Imaging result of dot targets with high resolution sliding spotlight spaceborne SAR

    表  1  高分辨率宽测绘带滑动聚束典型参数

    Table  1.   Typical parameters for sliding spotlight SAR with high resolution and wide swath

    参数数值
    距离向发射带宽2.4 G,单个脉冲400 M
    PRF3000~4000 Hz,分段变重频
    采样延迟分段变采样延迟
    聚束因子1/40
    下载: 导出CSV

    表  2  典型大气参数

    Table  2.   Typical atmosphere parameters

    参数数值
    场景大气压1.014 MPa
    相对湿度20%
    场景气温10°C
    场景海拔100 m
    下载: 导出CSV

    表  3  高分辨滑动聚束成像评估结果

    Table  3.   Evaluation results of high resolution sliding spotlight imaging

    点目标距离向方位向距离向分辨率 (m)方位向分辨率 (m)
    PSLR (dB)ISLR (dB)PSLR (dB)ISLR (dB)
    a–25.72–19.46–23.13–18.220.150.16
    b–25.42–19.46–22.97–19.010.150.16
    c–25.70–19.45–24.76–19.590.150.16
    d–25.66–19.49–21.77–18.690.150.16
    e–25.37–19.23–21.27–18.430.150.16
    下载: 导出CSV
  • [1] CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Norwood: Artech House, 2005: 1–9.
    [2] 张澄波. 综合孔径雷达[M]. 北京: 科学出版社, 1989: 1–5.

    ZHANG Chengbo. Synthetic Aperture Radar[M]. Beijing: Science Press, 1989: 1–5.
    [3] 袁孝康. 星载合成孔径雷达导论[M]. 北京: 国防工业出版社, 2003: 1–5.

    YUAN Xiaokang. Introduce to the Spaceborne Synthetic Aperture Radar[M]. Beijing: National Defend Industry Press, 2003: 1–5.
    [4] WILEY C A. Synthetic aperture radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, AES-21(3): 440–443. doi: 10.1109/TAES.1985.310578
    [5] TSUNODA S I, PACE F, STENCE J, et al. Lynx: A high-resolution synthetic aperture radar[C]. SPIE 3704, Radar Sensor Technology IV, Orlando, USA, 1999: 1–4. doi: 10.1117/12.354602.
    [6] ENDER J H G and BRENNER A R. PAMIR-a wideband phased array SAR/MTI system[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(3): 165–172. doi: 10.1049/ip-rsn:20030445
    [7] WERNINGHAUS R and BUCKREUSS S. The TerraSAR-X mission and system design[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 606–614. doi: 10.1109/tgrs.2009.2031062
    [8] 邓云凯, 陈倩, 祁海明, 等. 一种基于频域子带合成的多发多收高分辨率SAR成像算法[J]. 电子与信息学报, 2011, 33(5): 1082–1087. doi: 10.3724/SP.J.1146.2010.01067

    DENG Yunkai, CHEN Qian, QI Haiming, et al. A high-resolution imaging algorithm for MIMO SAR based on the sub-band synthesis in frequency domain[J]. Journal of Electronics &Information Technology, 2011, 33(5): 1082–1087. doi: 10.3724/SP.J.1146.2010.01067
    [9] LORD R T and INGGS M R. High resolution SAR processing using stepped-frequencies[C]. 1997 IEEE International Geoscience and Remote Sensing Symposium, Remote Sensing - A Scientific Vision for Sustainable Development, Singapore, 1997: 490–492. doi: 10.1109/IGARSS.1997.615924.
    [10] WU Yuan, SUN Guangcai, YANG Chun, et al. Processing of very high resolution spaceborne sliding spotlight SAR data using velocity scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1505–1518. doi: 10.1109/TGRS.2015.2481923
    [11] PRATS-IRAOLA P, SCHEIBER R, RODRIGUEZ-CASSOLA M, et al. On the processing of very high resolution spaceborne SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6003–6016. doi: 10.1109/TGRS.2013.2294353
    [12] BELCHER D P. Theoretical limits on SAR imposed by the ionosphere[J]. IET Radar, Sonar & Navigation, 2008, 2(6): 435–448. doi: 10.1049/iet-rsn:20070188
    [13] 王沛. 高分辨率星载合成孔径雷达关键技术研究与验证[D]. [博士论文], 中国科学院大学, 2018: 47–49.

    WANG Pei. Study on key technology and verification of spaceborne high resolution synthetic aperture radar[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2018: 47–49.
    [14] VILLANO M, KRIEGER G, and MOREIRA A. Staggered-SAR for high-resolution wide-swath imaging[C]. 2012 IET International Conference on Radar Systems, Glasgow, UK, 2012: 1–6. doi: 10.1049/cp.2012.1600.
    [15] 秦显平. 星载GPS低轨卫星定轨理论及方法研究[D]. [博士论文], 解放军信息工程大学, 2009: 1–3.

    QIN Xianping. Research on precision orbit determination theory and method of low earth orbiter based on GPS technique[D]. [Ph.D. dissertation], The PLA Information Engineering University, 2009: 1–3.
    [16] ULANDER L M H, HELLSTEN H, and STENSTROM G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 760–776. doi: 10.1109/TAES.2003.1238734
    [17] DING Zegang, GUO Yansu, GAO Wenbin, et al. A range grating lobes suppression method for stepped-frequency SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(12): 5677–5687. doi: 10.1109/JSTARS.2016.2593711
    [18] DING Zegang, GAO Wenbin, LIU Jingyun, et al. A novel range grating lobe suppression method based on the stepped-frequency SAR image[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 606–610. doi: 10.1109/LGRS.2014.2352676
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  3276
  • HTML全文浏览量:  1396
  • PDF下载量:  393
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-30
  • 修回日期:  2019-12-01
  • 网络出版日期:  2019-12-01

目录

    /

    返回文章
    返回