基于导航卫星的干涉SAR数据采集策略优选方法分析

张凌志 刘飞峰 胡程

张凌志, 刘飞峰, 胡程. 基于导航卫星的干涉SAR数据采集策略优选方法分析[J]. 雷达学报, 2019, 8(5): 624–630. doi: 10.12000/JR19065
引用本文: 张凌志, 刘飞峰, 胡程. 基于导航卫星的干涉SAR数据采集策略优选方法分析[J]. 雷达学报, 2019, 8(5): 624–630. doi: 10.12000/JR19065
ZHANG Lingzhi, LIU Feifeng, and HU Cheng. Optimization method and analysis of data acquisition strategy based on interference SAR with GNSS transmitters[J]. Journal of Radars, 2019, 8(5): 624–630. doi: 10.12000/JR19065
Citation: ZHANG Lingzhi, LIU Feifeng, and HU Cheng. Optimization method and analysis of data acquisition strategy based on interference SAR with GNSS transmitters[J]. Journal of Radars, 2019, 8(5): 624–630. doi: 10.12000/JR19065

基于导航卫星的干涉SAR数据采集策略优选方法分析

DOI: 10.12000/JR19065
基金项目: 国家自然科学基金项目(61601032, 61625103)
详细信息
    作者简介:

    张凌志(1994–),男,四川成都人,硕士研究生。2017年在东北大学计算机科学与工程学院获得学士学位,现为北京理工大学信息与电子学院硕士研究生。主要研究方向为SS-BiSAR信号处理,差分干涉SAR等。E-mail: zlz_bit@outlook.com

    刘飞峰(1983–),男,陕西渭南人,博士,副教授。2012年在北京理工大学信息与电子学院获得博士学位,现担任北京理工大学信息与电子学院副教授。主要研究方向为双/多基地SAR信号处理、GEOSAR成像算法和SS-BiSAR目标检测等。E-mail: feifengliu_bit@bit.edu.cn

    胡 程(1981–),男,湖南岳阳人,博士,教授。2009年在北京理工大学信息与电子学院获得博士学位,现担任北京理工大学信息与电子学院教授,博士生导师,主要研究方向为地球同步轨道SAR、双基地/前向散射雷达信号处理和昆虫雷达等。E-mail: hucheng.bit@gmail.com

    通讯作者:

    刘飞峰 feifengliu_bit@bit.edu.cn

  • 责任主编:张晓玲 Corresponding Editor: ZHANG Xiaoling
  • 中图分类号: TP79

Optimization Method and Analysis of Data Acquisition Strategy Based on Interference SAR with GNSS Transmitters

Funds: The National Natural Science Foundation of China (61601032, 61625103)
More Information
  • 摘要: 基于导航卫星的干涉SAR(GNSS-InSAR)使用在轨导航卫星作为照射源,近地面部署接收机,利用导航卫星的星座特性以及重轨特性,可实现区域性的连续观测。对于场景1维/3维形变反演而言,需要连续时间的数据采集,由于导航卫星并非严格意义上的重轨,且重轨时间具有不确定性,原始数据冗余度高,数据对齐时截取量大,数据有效性低。该文针对GNSS-InSAR场景数据采集时间精确性问题,提出了一种重轨数据采集优化模型,该方法通过实际轨迹与TLE预测轨迹相结合的方式,通过空间相干系数的滑窗轨迹对齐,以获取相邻天导航卫星重轨时间间隔,实现精确的GNSS-InSAR数据采集,在降低原始数据冗余度下,保证数据的有效合成孔径时间。实测数据表明所提方法的有效性。

     

  • 图  1  数据截取与有效数据示意图

    Figure  1.  Effective data interception diagram

    图  2  GNSS-InSAR数据采集时间优化流程

    Figure  2.  Time optimization process of GNSS-InSAR data acquisition

    图  3  全时段下场景分辨单元面积

    Figure  3.  Scene resolution unit area in full time

    图  4  首次数据采集时间设计结果

    Figure  4.  Design results of first data acquisition time

    图  5  GNSS-InSAR场景3维形变反演实验拓扑构型设计结果

    Figure  5.  GNSS-InSAR topological configuration design results of 3D deformation retrieval experiment

    图  6  对齐后的TLE卫星轨迹与实测数据卫星轨迹

    Figure  6.  Aligned TLE satellite trajectory and measured data satellite trajectory

    图  7  场景[–147, 20, 0]处理论PSF

    Figure  7.  Theoretical PSF in scene at position of [–147, 20, 0]

    图  8  数据采集优化模型仿真结果

    Figure  8.  Simulation results of data acquisition optimization model

    图  9  实测数据重轨空间相干系数

    Figure  9.  The spatial coherence coefficient of measured data

    图  10  场景成像结果

    Figure  10.  Imaging results of scene

    图  11  相干系数结果

    Figure  11.  Coherence coefficient result

    表  1  数据采集试验仿真参数

    Table  1.   Data acquisition test simulation parameters

    参数
    照射源北斗 IGSO1~5
    PRF1000 Hz
    带宽10.23 MHz
    合成孔径时间600 s
    TLE文件更新日期2019年4月29日
    预定数据采集日期2019年4月30日
    下载: 导出CSV
  • [1] CHERNIAKOV M. Space-surface bistatic synthetic aperture radar—prospective and problems[C]. Proceedings of RADAR 2002, Edinburgh, UK, 2002.
    [2] ANTONIOU M and CHERNIAKOV M. Experimental demonstration of passive GNSS-based SAR imaging modes[C]. Proceedings of IET International Radar Conference 2013, Xi’an, China, 2013.
    [3] ZENG Tao, ZHANG Tian, TIAN Weiming, et al. A novel subsidence monitoring technique based on space-surface bistatic differential interferometry using GNSS as transmitters[J]. Science China Information Sciences, 2015, 58(6): 1–16.
    [4] ZENG Tao, ZHANG Tian, TIAN Weiming, et al. Bistatic SAR imaging processing and experiment results using BeiDou-2/Compass-2 as illuminator of opportunity and a fixed receiver[C]. Proceedings of the 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar, Singapore, Singapore, 2015.
    [5] FAN Xuezhen, LIU Feifeng, ZHANG Tian, et al. Passive SAR with GNSS transmitters: Latest results and research progress[C]. Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, USA, 2017.
    [6] ANTONIOU M, CHERNIAKOV M, and MA Hui. Space-surface bistatic synthetic aperture radar with navigation satellite transmissions: A review[J]. Science China Information Sciences, 2015, 58(6): 1–20.
    [7] LIU Feifeng, ANTONIOU M, ZENG Zhangfan, et al. Point spread function analysis for BSAR with GNSS transmitters and long dwell times: Theory and experimental confirmation[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 781–785. doi: 10.1109/LGRS.2012.2223655
    [8] MA Hui, ANTONIOU M, and CHERNIAKOV M. Passive GNSS-based SAR resolution improvement using joint Galileo E5 signals[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(8): 1640–1644. doi: 10.1109/LGRS.2015.2417594
    [9] ZENG Tao, ZHANG Tian, TIAN Weiming, et al. Space-surface bistatic SAR image enhancement based on repeat-pass coherent fusion with Beidou-2/Compass-2 as illuminators[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1832–1836. doi: 10.1109/LGRS.2016.2614337
    [10] ANTONIOU M, LIU F, ZENG Z, et al. Coherent change detection using GNSS-based passive SAR: First experimental results[C]. Proceedings of 2012 IET International Conference on Radar Systems, Glasgow, UK, 2012.
    [11] TZAGKAS D, ANTONIOU M, and CHERNIAKOV M. Coherent change detection experiments with GNSS-based passive SAR[C]. Proceedings of 2016 European Radar Conference, London, UK, 2016.
    [12] LIU Feifeng, FAN Xuezhen, ZHANG Tian, et al. GNSS-based SAR interferometry for 3-D deformation retrieval: Algorithms and feasibility study[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5736–5748.
    [13] DONG Xichao, HU Cheng, TIAN Weiming, et al. Feasibility study of inclined geosynchronous SAR focusing using Beidou IGSO signals[J]. Science China Information Sciences, 2016, 59(12): 129302. doi: 10.1007/s11432-016-5524-x
    [14] LIU Feifeng, FAN Xuezhen, ZHANG Lingzhi, et al. GNSS-based SAR for urban area imaging: Topology optimization and experimental confirmation[J]. International Journal of Remote Sensing, 2019, 40(12): 4668–4682. doi: 10.1080/01431161.2019.1569790
    [15] ZHANG Qilei, ANTONIOU M, CHANG Wenge, et al. Spatial decorrelation in GNSS-based SAR coherent change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 219–228. doi: 10.1109/TGRS.2014.2321145
    [16] ZEBKER H A and VILLASENOR J. Decorrelation in interferometric radar echoes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5): 950–959. doi: 10.1109/36.175330
    [17] FERRETTI A, PRATI C, and ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8–20. doi: 10.1109/36.898661
    [18] ZENG Tao, CHERNIAKOV M, and LONG Teng. Generalized approach to resolution analysis in BSAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(2): 461–474. doi: 10.1109/TAES.2005.1468741
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  2462
  • HTML全文浏览量:  781
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-04
  • 修回日期:  2019-08-12
  • 网络出版日期:  2019-10-01

目录

    /

    返回文章
    返回