机载多功能海上监视雷达系统设计与关键技术研究

蒋千 吴昊 王燕宇

蒋千, 吴昊, 王燕宇. 机载多功能海上监视雷达系统设计与关键技术研究[J]. 雷达学报, 2019, 8(3): 303–317. doi: 10.12000/JR19045
引用本文: 蒋千, 吴昊, 王燕宇. 机载多功能海上监视雷达系统设计与关键技术研究[J]. 雷达学报, 2019, 8(3): 303–317. doi: 10.12000/JR19045
JIANG Qian, WU Hao, and WANG Yanyu. Airborne multi-functional maritime surveillance radar system design and key techniques[J]. Journal of Radars, 2019, 8(3): 303–317. doi: 10.12000/JR19045
Citation: JIANG Qian, WU Hao, and WANG Yanyu. Airborne multi-functional maritime surveillance radar system design and key techniques[J]. Journal of Radars, 2019, 8(3): 303–317. doi: 10.12000/JR19045

机载多功能海上监视雷达系统设计与关键技术研究

DOI: 10.12000/JR19045
详细信息
    作者简介:

    蒋 千(1983–),男,山东聊城人,硕士。2013年在电子科技大学电子工程学院获得硕士学位,现为中国电子科技集团公司第三十八研究所工程师。主要研究方向为机载雷达总体工程、机载雷达对海面弱目标探测技术等。E-mail: jiangqian0925@163.com

    吴 昊(1983–),男,安徽巢湖人,2005年毕业于海军航空工程学院,海军驻合肥地区军事代表室军代表,主要研究方向为雷达技术管理与装备质量管理

    王燕宇(1977–),男,安徽明光人,现为中国电子科技集团公司第三十八研究所高级工程师,主要研究方向为机载雷达总体工程等

    通讯作者:

    蒋千 jiangqian0925@163.com

  • 中图分类号: TN958

Airborne Multi-functional Maritime Surveillance Radar System Design and Key Techniques

More Information
  • 摘要: 机载多功能海上监视雷达系统作为机载平台对海探测的主要任务载荷,具有全天候、全天时、探测范围广和工作环境复杂多变等特点,是极具应用前景的一种广域海上监视雷达系统,在海上作战体系中占有重要地位。该文根据多功能海上监视雷达的系统特点及优势,对系统设计中的雷达体制选择、工作参数选择和工作模式设计等进行了论述,并对影响其关键性能的强海杂波中慢速目标检测、跟踪和目标识别问题以及解决问题的技术途径进行了分析。

     

  • 图  1  美国Raytheon公司研制的SeaVue“海妖”雷达组成单元实物及工作效果图

    Figure  1.  Physical and operational results of SeaVue “Sea monster” radar component units developed by Raytheon company, USA

    图  2  法国Thales公司研制的Ocean Master雷达组成单元实物图

    Figure  2.  Physical charts of Ocean Master Radar component units developed by Thales company of France

    图  3  以色列埃尔塔公司研制的EL/M-2022A型雷达组成单元实物及工作效果图

    Figure  3.  EL/M-2022A radar component units developed by Elta company of Israel

    图  4  SELEX GALILEO公司研制的Seaspray 5000E海面搜索雷达实物与工作效果图

    Figure  4.  Physical and operational results of Seaspray 5000E marine surface search radar developed by SELEX GALILEO company

    图  5  美国Raytheon公司研制的MFAS雷达AN/ZPY-3实物与工作效果图

    Figure  5.  Material and working effect diagrams of MAFS radar AN/ZPY-3 developed by Raytheon company, USA

    图  6  模拟/数字波束形成示意图

    Figure  6.  Analog/Digital beamforming diagrams

    图  7  不同扫描角度范围对应的天线功率增益积

    Figure  7.  Antenna power-gain product corresponding to different scanning angle ranges

    图  8  不同作用距离时波束掠射角和信杂噪比变化关系

    Figure  8.  Variation of beam grazing angle and SCNR at different ranges

    图  9  机载多功能海上监视雷达系统组成示意图

    Figure  9.  Composition diagram of airborne multifunctional marine surveillance radar system

    图  10  海杂波分布特性分析

    Figure  10.  Distribution characteristics of sea clutter

    图  11  海杂波区的去相关时间统计

    Figure  11.  Decorrelated time statistics in sea clutter area

    图  12  频率捷变非相参处理原理框图

    Figure  12.  Principle block diagram of frequency agility non-coherent processing

    图  13  某机载海上监视雷达回波单重检测和双重检测结果

    Figure  13.  Single detection and double detection of echo of an airborne marine surveillance radar

    图  14  对海面目标检测跟踪结果

    Figure  14.  Detection and tracking results of surface targets

    图  15  某型舰船的高分辨一维距离像

    Figure  15.  High resolution one-dimensional range profile of a ship

    图  16  一维距离像识别流程

    Figure  16.  One-dimensional range profile recognition process

    图  17  ISAR模式工作流程示意框图

    Figure  17.  Schematic block diagram of ISAR mode work flow chart

    图  18  某机载多功能海上监视雷达对海上某船ISAR成像结果

    Figure  18.  ISAR imaging results of an airborne multifunctional marine surveillance radar for a ship at sea

    图  19  某机载对海监视雷达对散货船ISAR成像结果

    Figure  19.  ISAR imaging results of an airborne maritime surveillance radar on bulk carrier

    图  20  舰船目标分类流程图

    Figure  20.  Flow chart of ship target classification

  • [1] 陈锋. 国外机载海面监视雷达发展现状与趋势[J]. 直升机技术, 2011(1): 64–68. doi: 10.3969/j.issn.1673-1220.2011.01.013

    CHEN Feng. Development of the abroad airborne maritime surveillance radar[J]. Helicopter Technique, 2011(1): 64–68. doi: 10.3969/j.issn.1673-1220.2011.01.013
    [2] 刘亮, 吉波. 无人机载雷达现状及发展趋势[J]. 现代导航, 2014(3): 227–231.

    LIU Liang and JI Bo. Status and development of radar on UAV[J]. Modern Navigation, 2014(3): 227–231.
    [3] Raytheon Company. SeaVue radar introduction datasheet[EB/OL]. www.raytheon.com.
    [4] Thales Company. Ocean master radar introduction datasheet[EB/OL]. www.thales.com.
    [5] IAI Elta System Company. EL/M-2022U radar introduction datasheet[EB/OL]. www.elta-ia.icom.
    [6] SELEX GALILEO Company. Seaspray radar introduction datasheet[EB/OL]. www.leonardocompany.com.
    [7] 张翼麟. 美国MQ-4C无人机发展特点及趋势分析[J]. 飞航导弹, 2014(1): 45–48.

    ZHANG Yilin. Analysis of the development characteristics and trend of american MQ-4C UAV[J]. Aerodynamic Missile Journal, 2014(1): 45–48.
    [8] 陈祖香. 美国MQ-4C无人机基本性能及作战应用[J]. 飞航导弹, 2016(12): 16–21.

    CHEN Zuxiang. Basic performance and operational application of american MQ-4C UAV[J]. Aerodynamic Missile Journal, 2016(12): 16–21.
    [9] IPPOLITO L J. Propagation Effects Handbook for Satellite Systems Design[M]. 4th ed. Baltimore: NASA Reference Publication, 1989.
    [10] 徐艳国, 李宗武. 高分辨率雷达的海杂波特性研究[J]. 现代雷达, 2008, 30(5): 17–20. doi: 10.3969/j.issn.1004-7859.2008.05.005

    XU Yanguo and LI Zongwu. A study on sea clutter characteristics of high resolution radar[J]. Modern Radar, 2008, 30(5): 17–20. doi: 10.3969/j.issn.1004-7859.2008.05.005
    [11] 何友, 黄勇, 关键, 等. 海杂波中的雷达目标检测技术综述[J]. 现代雷达, 2014, 36(12): 1–9. doi: 10.3969/j.issn.1004-7859.2014.12.001

    HE You, HUANG Yong, GUAN Jian, et al. An overview on radar target detection in sea clutter[J]. Modern Radar, 2014, 36(12): 1–9. doi: 10.3969/j.issn.1004-7859.2014.12.001
    [12] 王雪松. 雷达极化技术研究现状与展望[J]. 雷达学报, 2016, 5(2): 119–131. doi: 10.12000/JR16039

    WANG Xuesong. Status and prospects of radar polarimetry techniques[J]. Journal of Radars, 2016, 5(2): 119–131. doi: 10.12000/JR16039
    [13] 赵春雷, 王亚梁, 阳云龙, 等. 雷达极化信息获取及极化信号处理技术研究综述[J]. 雷达学报, 2016, 5(6): 620–638. doi: 10.12000/JR16092

    ZHAO Chunlei, WANG Yaliang, YANG Yunlong, et al. Review of radar polarization information acquisition and polarimetric signal processing techniques[J]. Journal of Radars, 2016, 5(6): 620–638. doi: 10.12000/JR16092
    [14] 王军东. 海杂波对机载雷达探测距离的影响[J]. 电子测量技术, 2018, 41(8): 21–24.

    WANG Jundong. Influence of sea clutter on airborne radar detection range[J]. Electronic Measurement Technology, 2018, 41(8): 21–24.
    [15] WARD K D, BAKER C J, and WATTS S. Maritime surveillance radar. I. Radar scattering from the ocean surface[J]. IEE Proceedings F - Radar and Signal Processing, 1990, 137(2): 51–62. doi: 10.1049/ip-f-2.1990.0009
    [16] RYAN J and JOHNSON M. Radar performance prediction for target detection at sea[C]. Proceedings of 1992 International Conference on Radar, Brighton, UK, 1992: 13–17.
    [17] CHAN H C. Radar sea-clutter at low grazing angles[J]. IEE Proceedings F- Radar and Signal Processing, 1990, 137(2): 102–112. doi: 10.1049/ip-f-2.1990.0015
    [18] 丁昊, 董云龙, 刘宁波, 等. 海杂波特性认知研究进展与展望[J]. 雷达学报, 2016, 5(5): 499–516. doi: 10.12000/JR16069

    DING Hao, DONG Yunlong, LIU Ningbo, et al. Overview and prospects of research on sea clutter property cognition[J]. Journal of Radars, 2016, 5(5): 499–516. doi: 10.12000/JR16069
    [19] 刘宁波, 关键, 黄勇, 等. 海杂波的分段分数布朗运动模型[J]. 物理学报, 2012, 61(19): 190503. doi: 10.7498/aps.61.190503

    LIU Ningbo, GUAN Jian, HUANG Yong, et al. Piecewise fractional Brownian motion for modeling sea clutter[J]. Acta Physica Sinica, 2012, 61(19): 190503. doi: 10.7498/aps.61.190503
    [20] 谢洪森, 邹鲲, 周鹏. 低掠射角海杂波的统计特性分析[J]. 雷达科学与技术, 2011, 9(2): 172–179. doi: 10.3969/j.issn.1672-2337.2011.02.015

    XIE Hongsen, ZOU Kun, and ZHOU Peng. Statistical analysis of sea clutter at low grazing angle[J]. Radar Science and Technology, 2011, 9(2): 172–179. doi: 10.3969/j.issn.1672-2337.2011.02.015
    [21] 陈小龙, 关键, 黄勇, 等. 雷达低可观测动目标精细化处理及应用[J]. 科技导报, 2017, 35(20): 19–27. doi: 10.3981/j.issn.1000-7857.2017.20.002

    CHEN Xiaolong, GUAN Jian, HUANG Yong, et al. Radar refined processing and its applications for low-observable moving target[J]. Science &Technology Review, 2017, 35(20): 19–27. doi: 10.3981/j.issn.1000-7857.2017.20.002
    [22] 陈小龙, 关键, 何友, 等. 高分辨稀疏表示及其在雷达动目标检测中的应用[J]. 雷达学报, 2017, 6(3): 239–251. doi: 10.12000/JR16110

    CHEN Xiaolong, GUAN Jian, HE You, et al. High-resolution sparse representation and its applications in radar moving target detection[J]. Journal of Radars, 2017, 6(3): 239–251. doi: 10.12000/JR16110
    [23] 舒占军. 基于高分辨距离像的雷达目标识别算法研究[D]. [硕士论文], 电子科技大学, 2016.

    SHU Zhanjun. Study on radar target recognttion using high resolution range profiles[D]. [Master dissertation], University of Electronic Science and Technology of China, 2016.
    [24] 王燕宇, 党红杏, 张长耀. ISAR船只识别技术应用综述[C]. 第九届全国雷达学术年会论文集, 烟台, 2004: 640-643.

    WANG Yanyu, DANG Hongxing, and ZHANG Changyao. Overview of ISAR ship recognition technology application[C]. Proceedings of National Radar Academic Annual Conference, Yantai, China, 2004: 640–643.
    [25] 陈文婷. SAR图像舰船目标特征提取与分类识别方法研究[D]. [硕士论文], 国防科学技术大学, 2012.

    CHEN Wenting. Study on the methods of feature extraction and recognition of ships in SAR imagery[D]. [Master dissertation], National University of Defense Technology, 2012.
    [26] 邢相薇, 计科峰, 康利鸿, 等. HRWS SAR图像舰船目标监视技术研究综述[J]. 雷达学报, 2015, 4(1): 107–121. doi: 10.12000/JR14144

    XING Xiangwei, JI Kefeng, KANG Lihong, et al. Review of ship surveillance technologies based on high-resolution wide-swath synthetic aperture radar imaging[J]. Journal of Radars, 2015, 4(1): 107–121. doi: 10.12000/JR14144
    [27] 陈文婷, 邢相薇, 计科峰. SAR图像舰船目标识别综述[J]. 现代雷达, 2012, 34(11): 53–58. doi: 10.3969/j.issn.1004-7859.2012.11.013

    CHEN Wenting, XING Xiangwei, and JI Kefeng. A survey of ship target recognition in SAR images[J]. Modern Radar, 2012, 34(11): 53–58. doi: 10.3969/j.issn.1004-7859.2012.11.013
    [28] 王庆, 廖静娟, 田帮森. 基于特征值分解的全极化SAR遥感数据分类研究[J]. 遥感技术与应用, 2010, 25(1): 31–37. doi: 10.11873/j.issn.1004-0323.2010.1.31

    WANG Qing, LIAO Jingjuan, and TIAN Bangsen. Polarimetric SAR data classification with eigenvalue-based decompositions[J]. Remote Sensing Technology and Application, 2010, 25(1): 31–37. doi: 10.11873/j.issn.1004-0323.2010.1.31
    [29] 刘眉洁, 戴永寿, 张杰, 等. 高分辨率全极化合成孔径雷达数据海冰二次分类方法研究[J]. 海洋学报, 2013, 35(4): 80–87. doi: 10.3969/j.issn.0253-4193.2013.04.010

    LIU Meijie, DAI Yongshou, ZHANG Jie, et al. The research on the object-based method of sea ice classification of high-resolution quad-polarization SAR data[J]. Acta Oceanologica Sinica, 2013, 35(4): 80–87. doi: 10.3969/j.issn.0253-4193.2013.04.010
    [30] 安彧. 海战场舰船目标检测与识别研究[D]. [博士论文], 2015: 59–80.

    Anbiao. Research on ship target detection and recognition in sea battlefield [D]. [Ph.D. dissertation], Harbin Engineering University, 2015: 59–80.
    [31] 承德保, 胡风明, 杨汝良. 利用改进分形特征对SAR图像目标检测方法的研究[J]. 电子与信息学报, 2009, 31(1): 164–168. doi: 10.3724/SP.J.1146.2008.00416

    CHENG Debao, HU Fengming, and YANG Ruliang. Study on target detection of SAR image using improved fractal feature[J]. Journal of Electronics &Information Technology, 2009, 31(1): 164–168. doi: 10.3724/SP.J.1146.2008.00416
    [32] 吴义兵, 宋建社, 王瑞花. 基于分形维数的SAR图像纹理特征的提取[J]. 四川兵工学报, 2011, 32(7): 74–77, 84.

    WU Yibing, SONG Jianshe, and WANG Ruihua. Extraction of texture features of SAR images based on fractal dimension[J]. Journal of Sichuan Ordnance, 2011, 32(7): 74–77, 84.
    [33] LEE W L and HSIEH K S. A robust algorithm for the fractal dimension of images and its applications to the classification of natural images and ultrasonic liver images[J]. Signal Processing, 2010, 90(6): 1894–1904. doi: 10.1016/j.sigpro.2009.12.010
    [34] 蒋少峰, 王超, 吴樊, 等. 基于结构特征分析的COSMO-SkyMed图像商用船舶分类算法[J]. 遥感技术与应用, 2014, 29(4): 607–615. doi: 10.11873/j.issn.1004-0323.2014.4.0607

    JIANG Shaofeng, WANG Chao, WU Fan, et al. Algorithm for merchant ship classification in COSMO-SkyMed images based on structural feature analysis[J]. Remote Sensing Technology and Application, 2014, 29(4): 607–615. doi: 10.11873/j.issn.1004-0323.2014.4.0607
    [35] 张华俊. 基于图像特征匹配技术的数字图像相关法研究[D]. [硕士论文], 安徽大学, 2014.

    ZHANG Huajun. Research of digital image correlation method based on image feature matching technology[D]. [Master dissertation], Anhui University, 2014.
    [36] CHEN Wenting, JI Kefeng, XING Xiangwei, et al. Ship recognition in high resolution SAR imagery based on feature selection[C]. Proceedings of International Conference on Computer Vision in Remote Sensing, Xiamen, China, 2013.
    [37] 蒋少峰. 高分辨率SAR图像船舶检测与分类方法研究[D]. [硕士论文], 中国科学院大学, 2013.

    JIANG Shaofeng. Study of ship detection and classification in high resolution SAR image[D]. [Master dissertation], University of Chinese Academy of Sciences, 2013.
    [38] 孙勋, 黄平平, 涂尚坦, 等. 利用多特征融合和集成学习的极化SAR图像分类[J]. 雷达学报, 2016, 5(6): 692–700. doi: 10.12000/JR15132

    SUN Xun, HUANG Pingping, TU Shangtan, et al. Polarimetric SAR image classification using multiple-feature fusion and ensemble learning[J]. Journal of Radars, 2016, 5(6): 692–700. doi: 10.12000/JR15132
    [39] 王俊, 郑彤, 雷鹏, 等. 深度学习在雷达中的研究综述[J]. 雷达学报, 2018, 7(4): 395–411. doi: 10.12000/JR18040

    WANG Jun, ZHENG Tong, LEI Peng, et al. Study on deep learning in radar[J]. Journal of Radars, 2018, 7(4): 395–411. doi: 10.12000/JR18040
    [40] 苏宁远, 陈小龙, 关键, 等. 基于卷积神经网络的海上微动目标检测与分类方法[J]. 雷达学报, 2018, 7(5): 565–574. doi: 10.12000/JR18077

    SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Detection and classification of maritime target with micro-motion based on CNNs[J]. Journal of Radars, 2018, 7(5): 565–574. doi: 10.12000/JR18077
    [41] 贺丰收, 张涛, 芦达. 机载对海探测雷达发展趋势[J]. 科技导报, 2017, 35(20): 28–35. doi: 10.3981/j.issn.1000-7857.2017.20.003

    HE Fengshou, ZHANG Tao, and LU da. Progress of airborne maritime detection radar[J]. Science &Technology Review, 2017, 35(20): 28–35. doi: 10.3981/j.issn.1000-7857.2017.20.003
  • 加载中
图(20)
计量
  • 文章访问数:  7839
  • HTML全文浏览量:  3137
  • PDF下载量:  532
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-19
  • 修回日期:  2019-06-17
  • 网络出版日期:  2019-06-01

目录

    /

    返回文章
    返回