面向海面目标检测的陆海分离和海面分区算法研究

周明 马亮 王宁 杨予昊

周明, 马亮, 王宁, 等. 面向海面目标检测的陆海分离和海面分区算法研究[J]. 雷达学报, 2019, 8(3): 366–372. doi: 10.12000/JR19036
引用本文: 周明, 马亮, 王宁, 等. 面向海面目标检测的陆海分离和海面分区算法研究[J]. 雷达学报, 2019, 8(3): 366–372. doi: 10.12000/JR19036
ZHOU Ming, MA Liang, WANG Ning, et al. Land-sea separation and sea surface zoning algorithms for sea surface target[J]. Journal of Radars, 2019, 8(3): 366–372. doi: 10.12000/JR19036
Citation: ZHOU Ming, MA Liang, WANG Ning, et al. Land-sea separation and sea surface zoning algorithms for sea surface target[J]. Journal of Radars, 2019, 8(3): 366–372. doi: 10.12000/JR19036

面向海面目标检测的陆海分离和海面分区算法研究

DOI: 10.12000/JR19036
基金项目: 国家部委基金
详细信息
    作者简介:

    周 明(1988–),男,江苏南通人,工程师,博士,主要研究方向为雷达信号处理。E-mail: mikecn@foxmail.com

    马 亮(1989–),男,工程师,博士,主要研究方向为雷达信号处理。E-mail: maliang123.happy@163.com

    王 宁(1986–),男,高级工程师,博士,主要研究方向为雷达信号处理,雷达反干扰等。E-mail: wangnsky@qq.com

    杨予昊(1983–),男,江苏南通人,高级工程师,博士,现担任中国电子科技集团公司智能感知技术重点实验室副主任,主要研究方向为雷达成像

    通讯作者:

    周明 mikecn@foxmail.com

  • 中图分类号: TN957.51

Land-sea Separation and Sea Surface Zoning Algorithms for Sea Surface Target

Funds: The National Ministries Foundation
More Information
  • 摘要: 自适应检测技术可有效提升岸对海警戒雷达海面目标探测性能,但海岛和陆地会导致成片或离散强杂波点,污染协方差矩阵估计的样本,海杂波的复杂性使得整片海杂波难以采用单一模型描述。为解决海面目标自适应检测时面临的非均匀样本参与协方差矩阵估计时杂波抑制性能严重下降问题和海杂波建模准确性不高的问题,该文提出一种面向海面目标检测的陆海分离和海面分区算法。首先,根据陆地回波序列的相位之间具有强相关性,而海洋回波序列为随机值这一特性,区分陆地杂波和海杂波;然后,根据擦地角对海杂波分区,拟合出每个分区的最优分布后选择合适的检测器进行自适应检测;最后,基于某S波段雷达实测数据验证该算法,检测结果与性能分析表明该算法相对传统算法可有效提高海面目标的检测率。

     

  • 图  1  自适应检测器检测流程

    Figure  1.  Adaptive detection process

    图  2  本文算法流程图

    Figure  2.  Flow chart of this paper algorithm

    图  3  全局拟合结果

    Figure  3.  Fitting result of radar data

    图  4  雷达位置示意图

    Figure  4.  Radar position diagram

    图  5  基于回波相位线性度的陆海分离结果

    Figure  5.  Land-sea separation result based on the correlation of phases

    图  6  基于擦地角的海面分区结果

    Figure  6.  Sea surface zoning result according to the rubbing angle

    图  7  海面目标检测性能

    Figure  7.  Detection performance of targets on sea surface

    表  1  分块后拟合结果

    Table  1.   Fitting result of uniformly partitioned data

    所假设的分布RayleighLognormalWeibullK
    拟合后服从分布的分块数31610
    下载: 导出CSV

    表  2  杂波分区后的拟合结果

    Table  2.   Fitting results of partitioned data according to the rubbing angle

    分块最优分布分块最优分布
    1Weibull2K分布
    3Weibull4Weibull
    5Weibull6Weibull
    7Weibull8K分布
    9K分布10K分布
    下载: 导出CSV
  • [1] 何友, 黄勇, 关键, 等. 海杂波中的雷达目标检测技术综述[J]. 现代雷达, 2014, 36(12): 1–9. doi: 10.3969/j.issn.1004-7859.2014.12.001

    HE You, HUANG Yong, GUAN Jian, et al. An overview on radar target detection in sea clutter[J]. Modern Radar, 2014, 36(12): 1–9. doi: 10.3969/j.issn.1004-7859.2014.12.001
    [2] 刘思彤, 程红, 孙文邦, 等. 面向海上目标的海陆分离方法研究[J]. 电子设计工程, 2014, 22(15): 96–100. doi: 10.3969/j.issn.1674-6236.2014.15.031

    LIU Sitong, CHENG Hong, SUN Wenbang, et al. Studies of sea-land segment methods oriented to targets on the sea[J]. Electronic Design Engineering, 2014, 22(15): 96–100. doi: 10.3969/j.issn.1674-6236.2014.15.031
    [3] KALKAN K, BAYRAM B, MAKTAV D, et al. Comparison of support vector machine and object based classification methods for coastline detection[J]. International Society for Photogrammetry and Remote Sensing, 2013, XL-7/W2: 125–172.
    [4] NIEDERMEIER A, ROMANEESSEN E, and LEHNER S. Detection of coastlines in SAR images using wavelet methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2270–2281. doi: 10.1109/36.868884
    [5] LIU Chun, YANG Jian, YIN Junjun, et al. Coastline detection in SAR images using a hierarchical level set segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(11): 4908–4920. doi: 10.1109/JSTARS.2016.2613279
    [6] LEE J S, JURKEVICH L, DEWAELE P, et al. Speckle filtering of synthetic aperture radar images: A review[J]. Remote Sensing Reviews, 1994, 8(4): 313–340. doi: 10.1080/02757259409532206
    [7] BO G, DELLEPIANE S, DE LAURENTIIS R. Semiautomatic coastline detection in remotely sensed images[C]. Proceedings of IEEE 2000 International Geoscience and Remote Sensing Symposium, Honolulu, USA, 2000.
    [8] 赵巨波, 符燕, 耿文东. 海杂波统计特性分析[J]. 现代雷达, 2005, 27(11): 4–6. doi: 10.3969/j.issn.1004-7859.2005.11.002

    ZHAO Jubo, FU Yan, and GENG Wendong. Analysis of sea clutter statistical characteristics[J]. Modern Radar, 2005, 27(11): 4–6. doi: 10.3969/j.issn.1004-7859.2005.11.002
    [9] 丁昊, 董云龙, 刘宁波, 等. 海杂波特性认知研究进展与展望[J]. 雷达学报, 2016, 5(5): 499–516. doi: 10.12000/JR16069

    DING Hao, DONG Yunlong, LIU Ningbo, et al. Overview and prospects of research on sea clutter property cognition[J]. Journal of Radars, 2016, 5(5): 499–516. doi: 10.12000/JR16069
    [10] KELLY E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(2): 115–127. doi: 10.1109/TAES.1986.310745
    [11] ROBEY F C, FUHRMANN D R, KELLY E J, et al. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208–216. doi: 10.1109/7.135446
    [12] CONTE E, LOPS M, and RICCI G. Asymptotically optimum radar detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2): 617–625. doi: 10.1109/7.381910
    [13] CONTE E, LOPS M, and RICCI G. Adaptive detection schemes in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(4): 1058–1069. doi: 10.1109/7.722671
    [14] CONTE E, DE MAIO A, and RICCI G. Covariance matrix estimation for adaptive CFAR detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2): 415–426. doi: 10.1109/TAES.2002.1008976
    [15] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62–66. doi: 10.1109/TSMC.1979.4310076
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  2859
  • HTML全文浏览量:  917
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-01
  • 修回日期:  2019-06-10
  • 网络出版日期:  2019-06-01

目录

    /

    返回文章
    返回