三维随机粗糙海面与舰船的复合电磁特性的高频方法分析研究

何姿 陈如山

何姿, 陈如山. 三维随机粗糙海面与舰船的复合电磁特性的高频方法分析研究[J]. 雷达学报, 2019, 8(3): 318–325. doi: 10.12000/JR19032
引用本文: 何姿, 陈如山. 三维随机粗糙海面与舰船的复合电磁特性的高频方法分析研究[J]. 雷达学报, 2019, 8(3): 318–325. doi: 10.12000/JR19032
HE Zi and CHEN Rushan. Study on efficient high frequency method of electromagnetic scattering from ships above sea surface[J]. Journal of Radars, 2019, 8(3): 318–325. doi: 10.12000/JR19032
Citation: HE Zi and CHEN Rushan. Study on efficient high frequency method of electromagnetic scattering from ships above sea surface[J]. Journal of Radars, 2019, 8(3): 318–325. doi: 10.12000/JR19032

三维随机粗糙海面与舰船的复合电磁特性的高频方法分析研究

DOI: 10.12000/JR19032
基金项目: 国家自然科学基金(61701232, 61431006),江苏省自然科学基金(BKs20170854),中国科协青年人才托举工程(2017QNRC001),中国博士后基金(2017M620861, 2018T110127)
详细信息
    作者简介:

    何 姿(1988–),女,博士,讲师。2016年6月在南京理工大学获得博士学位,2015年9月到2016年9月在美国伊利诺伊大学香槟分校(UIUC)交流访问。主要研究方向为计算电磁学、特征提取、目标识别,近年来在学术期刊、会议上发表论文60余篇,其中被SCI收录期刊论文30余篇。博士论文《目标电磁散射特性的抛物线方程方法研究》荣获2016年度中国电子学会优秀博士学位论文优秀奖;2017年度成功入选中国科协信息科技学会联合体青年人才托举工程;2018年度荣获International Applied Computational Electromagnetics Society (ACES) Symposium国际会议组颁发的“Young Scientist Award Scheme”

    陈如山(1965–),男,博士、教授、博士生导师,江苏省政协委员,教育部“长江学者”特聘教授,国家杰出青年科学基金获得者,享受国务院政府特殊津贴,国务院学位委员会学科评议组“电子科学与技术组”成员,“新世纪百千万人才工程”国家级人选,“十二五”国防基础研究专家组成员,教育部“长江学者和创新团队发展计划”创新团队带头人,国家重点学科“电磁场与微波技术”学科带头人,江苏省“青蓝工程”科技创新团队带头人,国际电子学报副主编,现为南京理工大学教授,博士生导师,电子工程与光电技术学院副院长。在电磁脉冲与瞬态电磁场、电磁兼容与雷达隐身技术、计算电磁学等方面发表论文160多篇,科学引文索引(SCI)收录论文140篇,(EI)收录论文120篇。曾获2000年度工程类科学引文索引(SCI)收录论文数为全国第一,南京市自然科学优秀学术论文三等奖,江苏省科技进步三等奖,国家教委科技进步三等奖,国家教委科技进步二等奖,江苏省国防工办科技进步一等奖,兵器工业集团公司科技进步二等奖,军队科技进步奖二等奖2项、三等奖1项。2015年江苏省研究生培养模式改革成果一等奖。目前已获得国防发明专利14项,实用新型发明专利8项

    通讯作者:

    陈如山 eerschen@njust.edu.cn

  • 中图分类号: TN011

Study on Efficient High Frequency Method of Electromagnetic Scattering from Ships above Sea Surface

Funds: The National Natural Science Foundation of China (61701232, 61431006), Jiangsu Province Natural Science Foundation (BKs20170854), The Young Elite Scientists Sponsorship Program (2017QNRC001), China Postdoctoral Science Foundation (2017M620861, 2018T110127)
More Information
    Corresponding author: CHEN Rushan, eerschen@njust.edu.cn
  • 摘要: 3维随机粗糙海面与其上方复杂目标复合电磁(EM)散射特性的建模与分析在微波遥感、目标识别、雷达成像、导弹制导等领域中有着重要的研究价值。该文主要研究了基于高频算法的随机粗糙海面及舰船的复合电磁散射特性,开发了PO-IPO混合方法,为3维随机粗糙海面与复杂目标一体化高效求解提供了新思路。文中分别使用了物理光学方法(PO)、迭代物理光学方法(IPO)、PO-PO以及PO-IPO混合方法对海面及舰船进行了建模与仿真,其中,引入锥形波来代替平面波作为发射源,锥形波可以更好地抑制粗糙面在边缘位置被突然截断而形成的电磁反射和边缘绕射等效应。从数值仿真结果中可以看出,PO-IPO混合方法可将复杂物体本身面元间以及粗糙海面与物体间的耦合作用考虑在内,因此PO-IPO可以作为一种有效的途径来快速获取随机粗糙海面及舰船的复合电磁散射特性。

     

  • 图  1  多路径模型基本原理

    Figure  1.  Theory of multipath model

    图  2  PO-IPO算法流程图

    Figure  2.  Flow chart for PO-IPO

    图  3  PM谱粗糙面模型

    Figure  3.  Model of PM rough surface

    图  4  入射角度为${\theta _{\rm i}}$=30°粗糙海面模型的双站RCS结果对比

    Figure  4.  Bistatic RCS results for the PM rough surface when ${\theta _{\rm i}}$=30°

    图  5  入射角度为${\theta _{\rm i}}$=60°粗糙海面模型的双站RCS结果对比

    Figure  5.  Bistatic RCS results for the PM rough surface when ${\theta _{\rm i}}$=60°

    图  6  舰船模型示意图

    Figure  6.  Model of ship

    图  7  舰船模型的双站RCS结果对比

    Figure  7.  Bistatic RCS results for the ship model

    图  8  粗糙海面与缩比舰船组合模型示意图

    Figure  8.  Model of ship over rough sea surface

    图  9  粗糙海面与缩比舰船组合模型的双站RCS结果对比

    Figure  9.  Bistatic RCS results for the ship model over rough sea surface

    图  10  粗糙海面与舰船组合模型示意图

    Figure  10.  Model of full-size ship over rough sea surface

    图  11  粗糙海面与舰船组合模型的双站RCS结果对比

    Figure  11.  Bistatic RCS results for the full-size ship model over rough sea surface

    表  1  PO与JMCFIE计算资源对比

    Table  1.   Comparison of computational resources between PO and JMCFIE

    数值方法时间(s)内存(MB)
    SBR27176
    PO23174
    JMCFIE19565912
    下载: 导出CSV

    表  2  SBR, IPO与MoM-MLFMA计算资源对比

    Table  2.   Comparison of computational resources among SBR, IPO and MoM-MLFMA

    数值方法时间(s)内存(MB)
    SBR1558
    IPO259374
    MoM-MLFMA1125701178
    下载: 导出CSV

    表  3  PO-IPO与JMCFIE计算资源对比

    Table  3.   Comparison of computational resources between PO-IPO and JMCFIE

    数值方法时间(s)内存(MB)
    PO-IPO471.842.5
    JMCFIE8994.021645.0
    下载: 导出CSV
  • [1] THORSOS E I. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum[J]. The Journal of the Acoustical Society of America, 1988, 83(1): 78–92. doi: 10.1121/1.396188
    [2] LEADER J. The relationship between the Kirchhoff approach and small perturbation analysis in rough surface scattering theory[J]. IEEE Transactions on Antennas and Propagation, 1971, 19(6): 786–788. doi: 10.1109/TAP.1971.1140044
    [3] BASS F G and FUKS I M. Wave Scattering from Statistically Rough Surfaces[M]. Oxford: Pergamon Press, 1979.
    [4] FUKS I M. Wave diffraction by a rough boundary of an arbitrary plane-layered medium[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(4): 630–639. doi: 10.1109/8.923325
    [5] 魏鹏博, 江旺强, 张晓梨, 等. 基于小斜率近似方法的沥青路面电磁散射[C]. 第十二届全国电波传播学术讨论会论文集, 青岛, 2013.

    WEI Pengbo, JIANG Wangqiang, ZHANG Xiaoli, et al. Electromagnetic L scattering of asphalt pavement based on small slope approximation method[C]. National Symposium on Radio Communication, Qingdao, 2013.
    [6] JOHNSON J T, SHIN R T, KONG Jinau, et al. A numerical study of the composite surface model for ocean backscattering[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(1): 72–83. doi: 10.1109/36.655319
    [7] CHEN M F and FUNG A K. A numerical study of the regions of validity of the Kirchhoff and small-perturbation rough surface scattering models[J]. Radio Science, 1988, 23(2): 163–170. doi: 10.1029/RS023i002p00163
    [8] THORSOS E I and JACKSON D R. The validity of the perturbation approximation for rough surface scattering using a Gaussian roughness spectrum[J]. The Journal of the Acoustical Society of America, 1989, 86(1): 261–277. doi: 10.1121/1.398342
    [9] JOHNSON J T. A numerical study of scattering from an object above a rough surface[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(10): 1361–1367. doi: 10.1109/TAP.2002.802152
    [10] VORONOVICH A. Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces[J]. Waves in Random Media, 1994, 4(3): 337–367. doi: 10.1088/0959-7174/4/3/008
    [11] NIETO-VESPERINAS M. Depolarization of electromagnetic waves scattered from slightly rough random surfaces: A study by means of the extinction theorem[J]. Journal of the Optical Society of America, 1982, 72(5): 539–547. doi: 10.1364/JOSA.72.000539
    [12] BAHAR E and LEE B S. Radar scatter cross sections for two-dimensional random rough surfaces - full wave solutions and comparisons with experiments[J]. Waves in Random Media, 1996, 6(1): 1–23. doi: 10.1080/13616679609409792
    [13] WINEBRENNER D P and ISHIMARU A. Application of the phase-perturbation technique to randomly rough surfaces[J]. Journal of the Optical Society of America A, 1985, 2(12): 2285–2294. doi: 10.1364/JOSAA.2.002285
    [14] LIANG Y, ZENG X H, GUO L X, et al. Review on the pre-study about specific target and rough soil surface composite electromagnetic scattering basing on an efficient numerical strategy[C]. 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 2016: 3198.
    [15] 叶红霞. 随机粗糙面与目标复合电磁散射的数值计算方法[D]. [博士论文], 复旦大学, 2007.

    YE Hongxia. Numerical methods for the composite electromagnetic scattering of random rough surface and targets[D]. [Ph.D. dissertation], Fudan University, 2007.
    [16] 朱国强, 孙劲, 郑立志, 等. 平板目标与随机粗糙面对电磁波的复合散射[J]. 武汉大学学报(自然科学版), 2000, 46(1): 99–103.

    ZHU Guoqiang, SUN Jin, ZHENG Lizhi, et al. Composite scattering of electromagnetic waves by the plate target and random rough surface[J]. Journal of Wuhan University (Natural Science Edition), 2000, 46(1): 99–103.
    [17] 杨伟. 三维复杂粗糙海面电磁散射建模研究与特性分析[D]. [博士论文], 电子科技大学, 2012.

    YANG Wei. Charecteristics analysis and modeling research on electromagnetic scattering from 3D complicated rough sea surface[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2012.
    [18] 王强, 郭立新, 刘忠玉. 粗糙海面与上方多目标瞬态电磁散射混合算法[J]. 西安电子科技大学学报, 2018, 45(5): 57–63. doi: 10.3969/j.issn.1001-2400.2018.05.010

    WANG Qiang, GUO Lixin, and LIU Zhongyu. Hybrid method for transient electromagnetic scattering from multiple targets above the rough sea surface[J]. Journal of Xidian University, 2018, 45(5): 57–63. doi: 10.3969/j.issn.1001-2400.2018.05.010
    [19] 叶红霞, 金亚秋. 三维介质粗糙面上导体目标散射的解析-数值混合算法[J]. 电波科学学报, 2008, 23(6): 1144–1153, 1187. doi: 10.3969/j.issn.1005-0388.2008.06.025

    YE Hongxia and JIN Yaqiu. A hybrid analytical-numerical algorithm for computation of scattering from a 3D PEC target above a dielectric rough surface[J]. Chinese Journal of Radio Science, 2008, 23(6): 1144–1153, 1187. doi: 10.3969/j.issn.1005-0388.2008.06.025
    [20] 张民, 郭立新, 聂丁, 等. 海面目标雷达散射特性与电磁成像[M]. 北京: 科学出版社, 2015.

    ZHANG Min, GUO Lixin, NIE Ding, et al. Radar Scattering Characteristics and Electromagnetic Imaging of Targets on the Sea Surface[M]. Beijing: Science Press, 2015.
    [21] 金亚秋, 刘鹏, 叶红霞. 随机粗糙面与目标复合散射数值模拟理论与方法[M]. 北京: 科学出版社, 2008.

    JIN Yaqiu, LIU Peng, and YE Hongxia. Theory and Method of Numerical Simulation of Composite Scattering from the Object and Randomly Rough Surface[M]. Beijing: Science Press, 2008.
    [22] 郭立新, 王蕊, 吴振森. 随机粗糙面散射的基本理论与方法[M]. 北京: 科学出版社, 2010.

    GUO Lixin, WANG Rui, and WU Zhensen. Basics Theory and Method for the Scattering from the Random Rough Surface[M]. Beijing: Science Press, 2010.
    [23] 康士峰, 王显德. 粗糙面与目标电磁散射统计特性分析[J]. 微波学报, 2004, 20(3): 43–46. doi: 10.3969/j.issn.1005-6122.2004.03.010

    KANG Shifeng and WANG Xiande. Analysis of statistical characteristics for EM scattering from rough surface and target[J]. Journal of Microwaves, 2004, 20(3): 43–46. doi: 10.3969/j.issn.1005-6122.2004.03.010
    [24] ZHU G Q, CAO Q F, and YANG H L. Analysis of double bounce scattering between target and rough surface[J]. Chinese Journal of Radio Science, 1996, 11(1): 80–84.
    [25] 邹高翔, 童创明, 高飞, 等. 复杂陆地粗糙面及其上方坦克目标复合散射研究[J]. 电波科学学报, 2017, 32(3): 261–272. doi: 10.13443/j.cjors.2017042801

    ZOU Gaoxiang, TONG Chuangming, GAO Fei, et al. Composite electromagnetic scattering from tank target above complicated ground rough surface[J]. Chinese Journal of Radio Science, 2017, 32(3): 261–272. doi: 10.13443/j.cjors.2017042801
    [26] 潘小敏, 盛新庆, 孔雷. 电特大舰船电磁环境的并行多层快速多极子研究[J]. 装备环境工程, 2008, 5(1): 48–52, 60. doi: 10.3969/j.issn.1672-9242.2008.01.012

    PAN Xiaomin, SHENG Xinqing, and KONG Lei. Analysis on electromagnetic environment of an extremely large ship by parallel MLFMA[J]. Equipment Environmental Engineering, 2008, 5(1): 48–52, 60. doi: 10.3969/j.issn.1672-9242.2008.01.012
    [27] 刁桂杰, 许小剑, 倪虹, 等. 舰船目标宽带单脉冲雷达三维成像建模与仿真[J]. 系统仿真学报, 2018, 30(7): 2515–2524. doi: 10.16182/j.issn1004731/x.joss.201807011

    DIAO Guijie, XU Xiaojian, NI Hong, et al. Three-dimensional imaging modeling and simulation of ships based on wide-band monopulse radar[J]. Journal of System Simulation, 2018, 30(7): 2515–2524. doi: 10.16182/j.issn1004731/x.joss.201807011
    [28] YE H X and JIN Y Q. Fast iterative approach to electromagnetic scattering from the target above a rough surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(1): 108–115.
    [29] DING D Z, LI G M, AN Y Y, et al. Application of hierarchical two-level spectral preconditioning method for electromagnetic scattering from the rough surface[J]. International Journal of Antennas and Propagation, 2014, 2014: 1–10. doi: 10.1155/2014/752418
    [30] AN Yuyuan, WANG Daoxiang, and CHEN Rushan. A fast numerical algorithm for calculating electromagnetic scattering from an object above a rough surface[J]. Electromagnetics, 2013, 33(1): 10–22. doi: 10.1080/02726343.2013.751006
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  4118
  • HTML全文浏览量:  1544
  • PDF下载量:  247
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-28
  • 修回日期:  2019-04-04
  • 网络出版日期:  2019-06-01

目录

    /

    返回文章
    返回