基于辅助数字高程模型的方位多通道SAR相位失配校正方法

李强 范怀涛

李强, 范怀涛. 基于辅助数字高程模型的方位多通道SAR相位失配校正方法[J]. 雷达学报, 2019, 8(5): 616–623. doi: 10.12000/JR19009
引用本文: 李强, 范怀涛. 基于辅助数字高程模型的方位多通道SAR相位失配校正方法[J]. 雷达学报, 2019, 8(5): 616–623. doi: 10.12000/JR19009
LI Qiang and FAN Huaitao. Channel phase mismatch calibration for multichannel in azimuth SAR imaging aided by digital elevation model[J]. Journal of Radars, 2019, 8(5): 616–623. doi: 10.12000/JR19009
Citation: LI Qiang and FAN Huaitao. Channel phase mismatch calibration for multichannel in azimuth SAR imaging aided by digital elevation model[J]. Journal of Radars, 2019, 8(5): 616–623. doi: 10.12000/JR19009

基于辅助数字高程模型的方位多通道SAR相位失配校正方法

doi: 10.12000/JR19009
基金项目: 国家重点研发计划项目(2017YFB0502700)
详细信息
    作者简介:

    李 强(1979–),男,山西榆次人,博士,助理研究员,2007年在原总装备部装备学院(现航天工程大学)获得博士学位,现为北京跟踪与通信技术研究所助理研究员。主要研究方向为航天工程总体。E-mail: lenovo1979lq@163.com

    范怀涛(1990–),男,山东潍坊人,博士,助理研究员,2017年在中国科学院大学获得博士学位,现为中国科学院电子学研究所助理研究员。主要研究方向为方位多通道合成孔径雷达信号处理。E-mail: huaitaofan@163.com

    通讯作者:

    范怀涛  huaitaofan@163.com

  • 责任主编:李宁 Corresponding Editor: LI Ning
  • 中图分类号: TN957

Channel Phase Mismatch Calibration for Multichannel in Azimuth SAR Imaging Aided by Digital Elevation Model

Funds: The National Key R&D Program of China (2017YFB0502700)
More Information
  • 摘要: 在方位多通道合成孔径雷达(SAR)系统中,进行非均匀采样重建之前,由于通道特性不一致导致的幅度相位差异必须进行校正,以避免图像中出现“鬼影”虚假目标,影响图像判读。方位多通道SAR工作过程中,平台偏航和俯仰导致的通道相位失配具有方位时变和距离空变特点。目前基于平台姿态信息的通道相位失配校正方法均未考虑地形高程起伏带来的影响。该文提出一种新的方位多通道SAR相位失配校正方法,基于辅助数字高程模型(DEM)信息和平台姿态信息,获得更加精确的场景下视角,在地形起伏较大的场景显著提高了通道间相位失配估计精度。针对提出的算法,开展仿真实验,针对虚假目标抑制效果开展定量评估。同时选取场景高程起伏较大场景开展了机载飞行试验数据处理,并对实验结果进行分析,验证算法的有效性。

     

  • 图  1  机载SAR系统飞行姿态示意图

    Figure  1.  The attitude of airborne SAR system

    图  2  天线相位中心偏移示意图

    Figure  2.  Movement of SAR antenna phase center

    图  3  2维横截面图

    Figure  3.  2-D cross-sectional view

    图  4  高程引起的成像叠掩示意图

    Figure  4.  Imaging overlap caused by topograghic relief

    图  5  基于DEM辅助的方位多通道SAR通道失配补偿方法流程图

    Figure  5.  The flowchart of the proposed channel phase mismatch calibration method based on the aided DEM

    图  6  场景点目标间距及高程设置

    Figure  6.  Five points set in the simulated scene

    图  7  仿真实验结果

    Figure  7.  Experimental results of the simulation

    图  8  试验过程中的平台姿态信息

    Figure  8.  The attitude information recorded by the IMU

    图  9  机载SAR数据处理结果

    Figure  9.  Imaging results of the airborne SAR experimental data

    表  1  仿真机载实验参数

    Table  1.   System parameters of the simulated airborne experiment

    系统参数数值
    通道数目4
    飞行高度(m)3000
    平台速度(m/s)120
    载频(GHz)5.4
    发射信号带宽(MHz)210
    脉冲重复频率(Hz)150
    多普勒带宽(Hz)384
    下载: 导出CSV

    表  2  仿真实验定量评估结果(dB)

    Table  2.   Quantitative assessment result of the simulation (dB)

    目标未校正未考虑高程起伏考虑高程起伏
    A–5–34–53
    B–7–50–50
    C–5–28–53
    D–6–37–51
    E–5–27–52
    下载: 导出CSV

    表  3  C波段方位向4通道机载SAR实验参数

    Table  3.   Experimental parameters of the C-band azimuth four channel airborne SAR system

    系统参数数值
    通道数目4
    平台高度(m)3000
    平台速度(m/s)129.64
    载频(GHz)5.4
    发射信号带宽(MHz)210
    方位向天线尺寸(m)0.624
    脉冲重复频率(Hz)137.19
    下载: 导出CSV
  • [1] GEBERT N, KRIEGER G, and MOREIRA A. High resolution wide swath SAR imaging with digital beam-forming-performance analysis, optimization, system design[C]. Proceedings of the 6th European Conference on Synthetic Aperture Radar, Dresden, Germany, 2006: 341–344.
    [2] ZHANG Lei, XING Mengdao, QIU Chengwei, et al. Adaptive two-step calibration for high resolution and wide-swath SAR imaging[J]. IET Radar, Sonar & Navigation, 2010, 4(4): 548–559. doi: 10.1049/iet-rsn.2008.0158
    [3] SUN Jili, YU Weidong, and DENG Yunkai. The SAR payload design and performance for the GF-3 mission[J]. Sensors, 2017, 17(10): E2419. doi: 10.3390/s17102419
    [4] KIM J H, YOUNIS M, PRATS-IRAOLA P, et al. First spaceborne demonstration of digital beamforming for azimuth ambiguity suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 579–590. doi: 10.1109/TGRS.2012.2201947
    [5] WILLIAMS D, LEDANTEC P, CHABOT M, et al. RADARSAT-2 image quality and calibration update[C]. Proceedings of 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2014: 1–4.
    [6] SHIMADA M. ALOS-2 Science program[C]. 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013: 2400–2403. doi: 10.1109/IGARSS.2013.6723303.
    [7] KRIEGER G, GEBERT N, and MOREIRA A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260–264. doi: 10.1109/LGRS.2004.832700
    [8] ZHANG Shuangxi, XING Mengdao, XIA Xianggen, et al. Multichannel HRWS SAR imaging based on range-variant channel calibration and multi-Doppler-direction restriction ambiguity suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4306–4327. doi: 10.1109/TGRS.2013.2281329
    [9] LI Jianbing, LI Xiaoping, LIN Mingfu, et al. Maximum-likelihood-based Doppler centroid estimation algorithm for MC-HRWS SAR system[J]. Electronics Letters, 2014, 50(22): 1630–1631. doi: 10.1049/el.2014.2723
    [10] GUO Xiaojiang, GAO Yesheng, WANG Kaizhi, et al. Improved channel error calibration algorithm for azimuth multichannel SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(7): 1022–1026. doi: 10.1109/LGRS.2016.2561961
    [11] FENG Jin, GAO Canguan, ZHANG Yi, et al. Phase mismatch calibration of the multichannel SAR based on azimuth cross correlation[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 903–907. doi: 10.1109/LGRS.2012.2227107
    [12] 刘艳阳, 李真芳, 杨桃丽, 等. 一种单星方位多通道高分辨率宽测绘带SAR系统通道相位偏差时域估计新方法[J]. 电子与信息学报, 2012, 34(12): 2913–2919. doi: 10.3724/SP.J.1146.2012.00562

    LIU Yanyang, LI Zhenfang, YANG Taoli, et al. A novel channel phase bias estimation method for spaceborne along-track multi-channel HRWS SAR in time-domain[J]. Journal of Electronics &Information Technology, 2012, 34(12): 2913–2919. doi: 10.3724/SP.J.1146.2012.00562
    [13] 张磊, 全英汇, 邢孟道, 等. 一种子空间投影的高分辨宽测绘带SAR成像通道均衡方法[J]. 电子与信息学报, 2010, 32(1): 1–6. doi: 10.3724/SP.J.1146.2008.01821

    ZHANG Lei, QUAN Yinghui, XING Mengdao, et al. An SSP based channel calibration for high-resolution and wide-swath SAR imagery[J]. Journal of Electronics &Information Technology, 2010, 32(1): 1–6. doi: 10.3724/SP.J.1146.2008.01821
    [14] LIU Yanyang, LI Zhenfang, WANG Zhibin, et al. On the baseband Doppler centroid estimation for multichannel HRWS SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12): 2050–2054. doi: 10.1109/LGRS.2014.2318511
    [15] ZINK M, BACHMANN M, BRAUTIGAM B, et al. TanDEM-X: The new global DEM takes shape[J]. IEEE Geoscience and Remote Sensing Magazine, 2014, 2(2): 8–23. doi: 10.1109/MGRS.2014.2318895
    [16] 范怀涛, 张志敏, 李宁. 基于特征分解的方位向多通道SAR相位失配校正方法[J]. 雷达学报, 2018, 7(3): 346–354. doi: 10.12000/JR17012

    FAN Huaitao, ZHANG Zhimin, and LI Ning. Channel phase mismatch calibration for multichannel in azimuth SAR imaging based on Eigen-structure method[J]. Journal of Radars, 2018, 7(3): 346–354. doi: 10.12000/JR17012
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  2592
  • HTML全文浏览量:  802
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-18
  • 修回日期:  2019-03-18
  • 网络出版日期:  2019-10-01

目录

    /

    返回文章
    返回