雷达海杂波测量试验回顾与展望

丁昊 刘宁波 董云龙 陈小龙 关键

丁昊, 刘宁波, 董云龙, 等. 雷达海杂波测量试验回顾与展望[J]. 雷达学报, 2019, 8(3): 281–302. doi: 10.12000/JR19006
引用本文: 丁昊, 刘宁波, 董云龙, 等. 雷达海杂波测量试验回顾与展望[J]. 雷达学报, 2019, 8(3): 281–302. doi: 10.12000/JR19006
DING Hao, LIU Ningbo, DONG Yunlong, et al. Overview and prospects of radar sea clutter measurement experiments[J]. Journal of Radars, 2019, 8(3): 281–302. doi: 10.12000/JR19006
Citation: DING Hao, LIU Ningbo, DONG Yunlong, et al. Overview and prospects of radar sea clutter measurement experiments[J]. Journal of Radars, 2019, 8(3): 281–302. doi: 10.12000/JR19006

雷达海杂波测量试验回顾与展望

DOI: 10.12000/JR19006
基金项目: 国家自然科学基金(61871391, 61871392, U1633122, 61531020)
详细信息
    作者简介:

    丁 昊(1988–),男,博士,讲师,主要研究方向为海杂波特性认知,雷达目标检测等。入选中国科协“青年人才托举工程”。E-mail: hao3431@tom.com

    刘宁波(1983–),男,博士,副教授,研究方向为雷达海杂波中目标的智能处理技术。E-mail: lnb198300@163.com

    陈小龙(1985–),男,山东烟台人,博士,副教授。研究领域包括雷达低可观测目标探测、海杂波抑制、信号精细化处理等。入选中国科协“青年人才托举工程”,获中国电子学会优秀博士学位论文奖。E-mail: cxlcxl1209@163.com

    关键:关   键(1968–),男,教授,博士生导师,主要研究方向为雷达目标检测与跟踪、侦察图像处理和信息融合。获全国优秀博士学位论文奖,新世纪百千万人才工程国家级人选。E-mail: guanjian96@tsinghua.org.cn

    通讯作者:

    丁昊 hao3431@tom.com

    关键 guanjian96@tsinghua.org.cn

  • 中图分类号: TN959

Overview and Prospects of Radar Sea Clutter Measurement Experiments

Funds: The National Natural Science Foundation of China (61871391, 61871392, U1633122, 61531020)
More Information
  • 摘要: 在复杂海洋环境条件下,海上目标探测性能受海杂波的影响很大。海杂波影响因素众多,机理复杂,特征描述和抑制难度大,需要开展长期、系统、持续、深入研究。开展海杂波测量试验并获取不同参数影响下的测量数据,是有效支撑该研究的重要前提。该文重点围绕海杂波测量试验情况,从岸基试验和机载试验两个方面,对加拿大、南非、澳大利亚、美国、西班牙、德国等国家开展的典型外场试验进行了归类梳理和总结,回顾了美国和日本开展的造浪池海杂波测量试验,并简要介绍了国内开展的海杂波测量试验和烟台的海上目标探测试验中心建设情况。最后,对后续试验仍需重点关注的方向做了展望,包括系统性、持续性的海杂波测量试验仍需进一步开展,任务背景牵引的海杂波测量试验及数据分析仍需强化,面向智能雷达应用的海杂波和目标回波数据集亟需构建。

     

  • 图  1  IPIX雷达天线及观测海域

    Figure  1.  IPIX radar antenna and observed area

    图  2  目标单元的时频域分析结果

    Figure  2.  Time frequency domain analysis results of target bin

    图  3  2006年试验架设位置(OTB)

    Figure  3.  Location of the deployment site in 2006 (OTB)

    图  4  2007年试验架设位置(信号山)

    Figure  4.  Location of the deployment site in 2007 (Signal Hill)

    图  5  合作目标船

    Figure  5.  Cooperative target ships

    图  6  典型幅度分布拟合结果

    Figure  6.  Typical amplitude distribution fitting results

    图  7  S波段雷达天线及分系统

    Figure  7.  S-band radar antenna and sub-systems

    图  8  袋鼠岛的3处试验场地

    Figure  8.  Locations of three sites on the Kangaroo Island

    图  9  L波段雷达系统(多通道)

    Figure  9.  L-band radar system (Multi-channel)

    图  10  架设位置和观测方位角

    Figure  10.  Location of the deployment site and azimuth angles

    图  11  LFMCW雷达系统

    Figure  11.  LFMCW radar system

    图  12  海杂波特性一般趋势曲线

    Figure  12.  General trend curves of sea clutter property

    图  13  采集海杂波时的飞行轨迹

    Figure  13.  Flight tracks for collection of sea clutter

    图  14  不同擦地角条件下的多普勒谱

    Figure  14.  Doppler spectrum at different grazing angles

    图  15  试验时的海洋环境参数

    Figure  15.  Sea environmental parameters during experiment

    表  1  IPIX雷达参数

    Table  1.   IPIX radar parameters

    参数参数值参数参数值
    工作频率(GHz)9.39波束宽度(°)0.9
    峰值功率(kW)8距离分辨率(m)30
    脉宽(μs)0.2距离采样间隔(m)15
    重频(PRF) (kHz)1中频频率(MHz)150
    天线增益(dB)45.7量化位数8位
    下载: 导出CSV

    表  2  Fynmeet雷达系统性能参数

    Table  2.   Fynmeet system and performance specifications

    分机参数参数值
    发射机频率范围(GHz)6.5~17.5
    峰值功率(kW)2
    PRF范围(kHz)0~30
    波形固定频、步进频、捷变频等
    天线类型双偏置反射器
    增益(dB)≥ 30
    波束宽度(°)≤ 2
    旁瓣(dB)≤ –25
    接收机动态范围(dB)60/120
    采集范围(km)0.2~15
    距离门1~96个,15 m/45 m分辨率
    采样类型I/Q中频采样
    镜像干扰抑制(dBc)≤ –41
    下载: 导出CSV

    表  3  地理位置和环境参数汇总

    Table  3.   Summary of geometry and environment conditions

    参数不同架设位置的参数值
    OTB信号山
    雷达高度(m)67294
    与海岸线距离(km)1.21.25
    方位角范围90°N~225°N240°N~20°N
    擦地角(°)0.3~30.3~10
    最大观测距离(km)1560
    平均风速(m/s)0~10.30~20.58
    最大风速(m/s)20.5830.87
    主导风向180°N~270°N130°N~140°N, 320°N~330°N
    有效波高(m)1~3.81~6
    最大波高(m)7.3111.26
    涌浪方向135°N~180°N230°N~270°N
    下载: 导出CSV

    表  4  S波段雷达主要性能参数

    Table  4.   Specifications of the S-band radar system

    参数参数值
    工作频率(GHz)3.2~3.3
    瞬时发射带宽(MHz)50
    瞬时接收带宽(MHz)10
    接收机通道数4路,实际使用3路
    存储深度支持至少连续300 s连续采样
    输出功率(kW)1
    占空比(%)6.5
    中频频率(MHz)125
    量化位数14位
    极化方式HH, VV
    下载: 导出CSV

    表  5  XPAR和发射机的主要性能参数

    Table  5.   Specifications of the XPAR and transmitter

    参数参数值
    工作频率(GHz)1.3
    发射机波束宽度(°)120
    发射机峰值功率(W)500
    发射机带宽(MHz)5
    发射天线增益(dBi)12
    脉宽(μs)20
    PRF (kHz)5
    通道间方位间隔0.5倍波长
    通道波束宽度(°)120
    阵列波束宽度(波束形成后)(°)6.3
    接收天线增益(dBi)12
    中频频率(MHz)175
    量化位数14位
    极化方式VV
    下载: 导出CSV

    表  6  记录的气象和波浪参数

    Table  6.   Recorded weather and wave parameters

    参数参数值
    kix022数据kix040数据
    平均风向(°)340230
    与阵列法线夹角(°)16252
    平均波浪方向(°)231222
    平均风速(m/s)4.54.7
    阵风风速(m/s)7.225
    温度(°C)15.015.2
    有效波高(m)2.42.8
    最大波高(m)3.46.6
    下载: 导出CSV

    表  7  X波段雷达参数

    Table  7.   X-band radar parameters

    参数参数值
    工作频率(GHz)9.5~10.0
    峰值功率(kW)500
    脉宽(ns)2.5(脉压后)
    距离分辨率(m)0.3
    PRF (kHz)2
    信号处理I/Q通道同步解调,8位量化,
    500 MHz采样率
    采集波门宽度156 m,包含512个距离单元
    采集模式聚束模式
    波束宽度(°)2.4(水平)/4(俯仰)
    极化方式HH或VV
    下载: 导出CSV

    表  8  LFMCW雷达参数和试验参数

    Table  8.   LFMCW radar and experimental parameters

    参数参数值
    工作频率(GHz)28~30
    极化HH
    带宽(GHz)2 (最大值)
    PRF (kHz)3 (最大值)
    波束宽度(°)3
    距离分辨率(m)0.08, 0.16和0.8
    波门中心与雷达的距离(m)1080, 1755
    波门宽度(m)108
    擦地角(°)2.52~2.79, 1.58~1.68
    方位角(°)138, 180
    平均风向(°)270
    海况3~4级(由风速等级推断)
    下载: 导出CSV

    表  9  NetRAD系统参数

    Table  9.   NetRAD system parameters

    参数参数值
    工作频率(GHz)2.45
    带宽(MHz)45
    峰值功率(dBm)57.7
    单基地距离分辨率(m)4.9
    PRF (kHz)1
    脉宽(μs)0.4~20
    极化HH, VV
    波束宽度(°)11.3 (俯仰)/8.9 (水平)
    天线增益(dBi)23.8
    下载: 导出CSV

    表  10  RSTER系统参数

    Table  10.   RSTER system parameters

    参数参数值
    工作频率(MHz)400~500
    带宽(MHz)0.2
    天线增益(dBi)29
    峰值功率(kW)100
    平均功率(kW)6
    PRF (kHz)0.25~1.5
    波束宽度(°)9 (水平)/6 (俯仰)
    下载: 导出CSV

    表  11  MCARM计划的雷达参数

    Table  11.   Radar parameters of the MCARM program

    参数参数值
    工作频率(GHz)1.25
    峰值功率(kW)20
    波形LFM信号或加窗的射频信号
    脉冲压缩比63
    PRF (kHz)单基地:0.5, 2, 7
    双基地:0.313, 23
    距离分辨率(m)120
    发射天线波束宽度(°)7.5
    天线单元数16列8行,共128个单元
    接收机通道数24路
    接收机带宽(MHz)0.8
    下载: 导出CSV

    表  12  LSCL试验的主要参数

    Table  12.   Main parameters of the LSCL experiment

    参数参数值
    波段X波段
    脉宽(ns)32
    采样率(MHz)70
    PRF大多数为1250 Hz
    波束内的脉冲数最多21个
    CNR约30%高于10 dB
    风向逆风、侧风和顺风
    擦地角平均为1.56°
    数据总时长(h)约5.6
    风速等级3个架次分布为3级、6级和4级
    下载: 导出CSV

    表  13  雷达系统参数和海洋环境参数

    Table  13.   Radar system and environmental parameters

    类别参数参数值
    雷达系统工作频率(GHz)9.375
    峰值功率(kW)8
    最大占空比(%)2
    距离分辨率(m)1.5
    PRF (Hz)500
    带宽(MHz)96
    波束宽度(°)3.8 (水平)/8 (俯仰)
    海洋环境海况2~3级
    有效波高(m)3~4
    波长(m)15
    波周期(s)10~12
    涌浪方向西北方向
    风向从西北到东南
    风速(m/s)5.14~6.17
    下载: 导出CSV

    表  14  典型试验参数

    Table  14.   Typical experimental parameters

    参数参数值
    工作频率(GHz)10.1
    LFM带宽(MHz)200
    极化HH, VV, HV, VH
    脉宽(μs)20
    距离分辨率(m)0.5
    距离向采样点数1024个
    方位角(°)0~360
    PRF (Hz)540
    方位向3 dB波束宽度2.4°
    飞行高度(km)1.353
    平台速度(km/h)约291
    下载: 导出CSV

    表  15  两型机载雷达系统试验参数

    Table  15.   Experimental parameters of two airborne radar systems

    参数类型XWEAR雷达系统PAMIR雷达系统
    工作频率(GHz)9.759.45
    峰值功率(kW)501.28
    极化HHVV
    距离分辨率(m)最高为0.3,试验时小于1最高为0.1,试验时7.5
    试验时工作模式聚束模式扫描MTI条带模式
    PRF (kHz)13
    试验地点Halifax东海岸(44°30$ '$N, 63°25$ '$W)德国Helgoland和Wilhelmshaven之间的北海
    载机飞行高度(km)1.828, 3.932, 7.012.5
    飞行速度(m/s)100100
    擦地角(°)7, 15, 2820
    波高范围(m)1.97~2.21 (有效波高)0.9~1.5 (涌浪高度)
    下载: 导出CSV

    表  16  造浪池试验雷达系统主要参数

    Table  16.   Main radar system parameters of wave tank experiment

    参数FMCW雷达MIDAS雷达IIS雷达
    雷达体制调频连续波脉冲多普勒连续波散射计
    工作频率(GHz)4~8 (典型值为6)3.15, 9.75, 15.75, 34.75, 943.2, 5.4, 9.6
    带宽125 MHz~4 MHz (典型值为4 MHz)500 MHz
    波束宽度(°)3513.7/16.6
    天线类型抛物面天线喇叭天线(3.15 GHz时为抛物面天线)喇叭天线
    极化方式双极化(HH, VV)双极化(HH, VV)单极化(HH或VV)
    PRF (kHz)121
    擦地角(°)63~2430~75
    下载: 导出CSV

    表  17  C波段雷达主要试验参数

    Table  17.   Main parameters of the C-band radar experiment

    参类参数值
    工作频率(GHz)5.5
    PRF(kHz)1
    脉宽1 μs,压缩比3
    波束宽度锥形波束,2.2°
    天线转速90°/s
    极化HH
    采集数据空间范围方位角范围:50°;距离范围:7 km
    信号处理500 MHz采样率,I/Q同步采集
    海况3~4级(根据Beaufort风速等级推断)
    下载: 导出CSV
  • [1] WARD K, TOUGH R, and WATTS S. Sea Clutter: Scattering, the K Distribution and Radar Performance[M]. 2nd ed., London: The Institution of Engineering and Technology, 2013.
    [2] WARD K D and WATTS S. Use of sea clutter models in radar design and development[J]. IET Radar, Sonar & Navigation, 2010, 4(2): 146–157. doi: 10.1049/iet-rsn.2009.0132
    [3] SKOLNIK M I. Radar Handbook[M]. 3rd ed., New York: The McGraw-Hill Companies Inc., 2008.
    [4] 何友, 黄勇, 关键, 等. 海杂波中的雷达目标检测技术综述[J]. 现代雷达, 2014, 36(12): 1–9. doi: 10.3969/j.issn.1004-7859.2014.12.001

    HE You, HUANG Yong, GUAN Jian, et al. An overview on radar target detection in sea clutter[J]. Modern Radar, 2014, 36(12): 1–9. doi: 10.3969/j.issn.1004-7859.2014.12.001
    [5] 丁昊. 雷达海杂波特性与目标检测方法研究[D]. [博士论文], 海军航空工程学院, 2016.

    DING Hao. Research on radar sea clutter property and target detection algorithms[D]. [Ph.D. dissertation], Naval Aeronautical and Astronautical University, 2016.
    [6] 丁昊, 董云龙, 刘宁波, 等. 海杂波特性认知研究进展与展望[J]. 雷达学报, 2016, 5(5): 499–516. doi: 10.12000/JR16069

    DING Hao, DONG Yunlong, LIU Ningbo, et al. Overview and prospects of research on sea clutter property cognition[J]. Journal of Radars, 2016, 5(5): 499–516. doi: 10.12000/JR16069
    [7] DROSOPOULOS A. Description of the OHGR database[R]. Technical Note 94–14, 1994.
    [8] DE WIND H J, CILLIERS J C, and HERSELMAN P L. DataWare: Sea clutter and small boat radar reflectivity databases[J]. IEEE Signal Processing Magazine, 2010, 27(2): 145–148. doi: 10.1109/MSP.2009.935415
    [9] ANTIPOV I. Analysis of sea clutter data[R]. Technical Report DSTO-TR-0647, 1998.
    [10] DONG Yunhan and MERRETT D. Statistical measures of S-band sea clutter and targets[R]. Technical Report DSTO-TR-2221, 2008.
    [11] DONG Yunhan and MERRETT D. Analysis of L-band multi-channel sea clutter[R]. Technical Report DSTO-TR-2455, 2010.
    [12] POSNER F L. Spiky sea clutter at high range resolutions and very low grazing angles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1): 58–73. doi: 10.1109/7.993229
    [13] CARRETERO-MOYA J, GISMERO-MENOYO J, BLANCO-DEL-CAMPO Á, et al. Statistical analysis of a high-resolution sea-clutter database[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 2024–2037. doi: 10.1109/TGRS.2009.2033193
    [14] SIEGEL A, OCHADLICK A, DAVIS JR J, et al. Spatial and temporal correlation of LOGAN-1 high-resolution radar sea clutter data[C]. Proceedings of 1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 1994: 818–821. doi: 10.1109/IGARSS.1994.399273.
    [15] RINO C L, ECKERT E, SIEGEL A, et al. X-band low-grazing-angle ocean backscatter obtained during LOGAN 1993[J]. IEEE Journal of Oceanic Engineering, 1997, 22(1): 18–26. doi: 10.1109/48.557536
    [16] HAIR T, LEE T, and BAKER C J. Statistical properties of multifrequency high-range-resolution sea reflections[J]. IEE Proceedings F-Radar and Signal Processing, 1991, 138(2): 75–79. doi: 10.1049/ip-f-2.1991.0012
    [17] ISHII S, SAYAMA S, and MIZUTANI K. Effect of changes in sea-surface state on statistical characteristics of sea clutter with X-band radar[J]. Wireless Engineering and Technology, 2011, 2(3): 5829. doi: 10.4236/wet.2011.23025
    [18] FABBRO V, BIEGEL G, FÖRSTER J, et al. Measurements of sea clutter at low grazing angle in Mediterranean coastal environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6379–6389. doi: 10.1109/TGRS.2017.2727057
    [19] AL-ASHWAL W A, BAKER C J, BALLERI A, et al. Statistical analysis of simultaneous monostatic and bistatic sea clutter at low grazing angles[J]. Electronics Letters, 2011, 47(10): 621–622. doi: 10.1049/el.2011.0557
    [20] AL-ASHWAL W A, WOODBRIDGE K, and GRIFFITHS H D. Analysis of bistatic sea clutter-Part I: Average reflectivity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1283–1292. doi: 10.1109/TAES.2014.120426
    [21] AL-ASHWAL W A, WOODBRIDGE K, and GRIFFITHS H D. Analysis of bistatic sea clutter-Part II: Amplitude statistics[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1293–1303. doi: 10.1109/TAES.2014.120434
    [22] RITCHIE M, STOVE A, WOODBRIDGE K, et al. NetRAD: Monostatic and bistatic sea clutter texture and Doppler spectra characterization at S-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5533–5543. doi: 10.1109/TGRS.2016.2567598
    [23] FIORANELLI F, RITCHIE M, GRIFFITHS H, et al. Analysis of polarimetric bistatic sea clutter using the NetRAD radar system[J]. IET Radar, Sonar & Navigation, 2016, 10(8): 1356–1366. doi: 10.1049/iet-rsn.2015.0416
    [24] GRECO M, STINCO P, GINI F, et al. Impact of sea clutter nonstationarity on disturbance covariance matrix estimation and CFAR detector performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1502–1513. doi: 10.1109/TAES.2010.5545205
    [25] HERSELMAN P L, BAKER C J, and DE WIND H J. An analysis of X-band calibrated sea clutter and small boat reflectivity at medium-to-low grazing angles[J]. International Journal of Navigation and Observation, 2008, 2008: 347518. doi: 10.1155/2008/347518
    [26] HERSELMAN P L and BAKER C J. Analysis of calibrated sea clutter and boat reflectivity data at C- and X-band in South African coastal waters[C]. IET International Conference on Radar Systems, Edinburgh, UK, 2007. doi: 10.1049/cp:20070616.
    [27] 陈帅. 海杂波背景下的过采样MTD方法研究[D]. [硕士论文], 西安电子科技大学, 2014.

    CHEN Shuai. Oversampling MTD method in sea clutter background[D]. [Master dissertation], Xidian University, 2014.
    [28] 陈小龙, 关键, 于晓涵, 等. 基于短时稀疏时频分布的雷达目标微动特征提取及检测方法[J]. 电子与信息学报, 2017, 39(5): 1017–1023. doi: 10.11999/JEIT161040

    CHEN Xiaolong, GUAN Jian, YU Xiaohan, et al. Radar micro-Doppler signature extraction and detection via short-time sparse time-frequency distribution[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1017–1023. doi: 10.11999/JEIT161040
    [29] DALEY J C, RANSONE J T, BURKETT J A, et al. Sea-clutter measurements on four frequencies[R]. Report No. 6806, 1968.
    [30] TITI G W and MARSHALL D F. The ARPA/navy mountaintop program: Adaptive signal processing for airborne early warning radar[C]. Proceedings of 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing, Atlanta, GA, USA, 1996: 1165–1168. doi: 10.1109/ICASSP.1996.543572.
    [31] LITTLE M O and BERRY W P. Real-time multichannel airborne radar measurements[C]. Proceedings of 1997 IEEE National Radar Conference, Syracuse, NY, USA, 1997: 138–142. doi: 10.1109/NRC.1997.588238.
    [32] HIMED B and SOUMEKH M. Synthetic aperture radar-moving target indicator processing of multi-channel airborne radar measurement data[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(6): 532–543. doi: 10.1049/ip-rsn:20050128
    [33] STEHWIEN W. Sea clutter measurements using an airborne X-band radar[C]. Proceedings of OCEANS’93, Victoria, BC, Canada, 1993, 1: 125–130. doi: 10.1109/OCEANS.1993.326036.
    [34] STEHWIEN W. Statistics and correlation properties of high resolution X-band sea clutter[C]. Proceedings of 1994 IEEE National Radar Conference, Atlanta, GA, USA, 1994: 46–51. doi: 10.1109/NRC.1994.328096.
    [35] ANTIPOV I. Statistical analysis of northern Australian coastline sea clutter data[R]. Technical Report DSTO-TR-1236, 2001.
    [36] CRISP D J, STACY N J S, and GOH A S. Ingara medium-high incidence angle polarimetric sea clutter measurements and analysis[R]. Technical Report DSTO-TR-1818, 2006.
    [37] MCDONALD M, CERUTTI-MAORI D, and DAMINI A. Characterisation and cancellation of medium grazing angle sea clutter[C]. The 7th European Radar Conference, Paris, France, 2010: 172–175.
    [38] DAMINI A, MCDONALD M, and HASLAM G E. X-band wideband experimental airborne radar for SAR, GMTI and maritime surveillance[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(4): 305. doi: 10.1049/ip-rsn:20030654
    [39] BRENNER A R and ENDER J H G. Demonstration of advanced reconnaissance techniques with the airborne SAR/GMTI sensor PAMIR[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(2): 152–162. doi: 10.1049/ip-rsn:20050044
    [40] MCDONALD M K and CERUTTI-MAORI D. Coherent radar processing in sea clutter environments, part 1: Modelling and partially adaptive STAP performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4): 1797–1817. doi: 10.1109/TAES.2016.140897
    [41] MCDONALD M K and CERUTTI-MAORI D. Coherent radar processing in sea clutter environments, Part 2: Adaptive normalised matched filter versus adaptive matched filter performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4): 1818–1833. doi: 10.1109/TAES.2016.140898
    [42] WATTS S, ROSENBERG L, BOCQUET S, et al. Doppler spectra of medium grazing angle sea clutter; Part 1: Characterisation[J]. IET Radar, Sonar & Navigation, 2016, 10(1): 24–31. doi: 10.1049/iet-rsn.2015.0148
    [43] WATTS S, ROSENBERG L, BOCQUET S, et al. Doppler spectra of medium grazing angle sea clutter; Part 2: Model assessment and simulation[J]. IET Radar, Sonar & Navigation, 2016, 10(1): 32–42. doi: 10.1049/iet-rsn.2015.0149
    [44] ROSENBERG L. Characterization of high grazing angle X-band sea-clutter Doppler spectra[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 406–417. doi: 10.1109/TAES.2013.120809
    [45] DONG Yunhan. High grazing angle and high resolution sea clutter: Correlation and polarization analyses[R]. Technical Report DSTO-TR-1972, 2007.
    [46] WEINBERG G V. An investigation of the Pareto distribution as a model for high grazing angle clutter[R]. Technical Report DSTO-TR-2525, 2011.
    [47] ROSENBERG L. Sea-spike detection in high grazing angle X-band sea-clutter[R]. Technical Report DSTO-TR-2820, 2013.
    [48] LAMONT-SMITH T, WASEDA T, and RHEEM C K. Measurements of the Doppler spectra of breaking waves[J]. IET Radar, Sonar & Navigation, 2007, 1(2): 149–157. doi: 10.1049/iet-rsn:20060109
    [49] LAMONT-SMITH T. An empirical model of EM scattering from steepening wave profiles derived from numerical computations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6): 1447–1454. doi: 10.1109/TGRS.2003.811551
    [50] LAMONT-SMITH T. Investigation of the variability of Doppler spectra with radar frequency and grazing angle[J]. IEE Proceedings-Radar, Sonar and Navigation, 2004, 151(5): 291–298. doi: 10.1049/ip-rsn:20040859
    [51] LAMONT-SMITH T. Azimuth dependence of Doppler spectra of sea clutter at low grazing angle[J]. IET Radar, Sonar & Navigation, 2008, 2(2): 97–103. doi: 10.1049/iet-rsn:20070099
    [52] LAMONT-SMITH T, MITOMI M, KAWAMURA T, et al. Electromagnetic scattering from wind blown waves and ripples modulated by longer waves under laboratory conditions[J]. IET Radar, Sonar & Navigation, 2010, 4(2): 265–279. doi: 10.1049/iet-rsn.2009.0072
    [53] LEE P H Y, BARTER J D, LAKE B M, et al. Lineshape analysis of breaking-wave Doppler spectra[J]. IEE Proceedings-Radar, Sonar and Navigation, 1998, 145(2): 135–139. doi: 10.1049/ip-rsn:19981822
    [54] 赵海云, 张瑞永, 武楠, 等. 基于实测数据的海杂波特性分析[J]. 雷达科学与技术, 2009, 7(3): 214–218. doi: 10.3969/j.issn.1672-2337.2009.03.011

    ZHAO Haiyun, ZHANG Ruiyong, WU Nan, et al. Analysis of sea clutter characteristics based on measured data[J]. Radar Science and Technology, 2009, 7(3): 214–218. doi: 10.3969/j.issn.1672-2337.2009.03.011
    [55] 刘志高, 徐向东, 刘斌. 某低空警戒雷达海杂波数据的统计特性分析[J]. 空军雷达学院学报, 2004, 18(4): 1–3, 10. doi: 10.3969/j.issn.1673-8691.2004.04.001

    LIU Zhigao, XU Xiangdong, and LIU Bin. Statistical analysis of sea clutter feature data from a low-altitude surveillance radar[J]. Journal of Air Force Radar Academy, 2004, 18(4): 1–3, 10. doi: 10.3969/j.issn.1673-8691.2004.04.001
    [56] 张忠, 袁业术, 孟宪德. 舰载超视距雷达背景杂波统计特性分析[J]. 系统工程与电子技术, 2002, 24(9): 19–22. doi: 10.3321/j.issn:1001-506X.2002.09.007

    ZHANG Zhong, YUAN Yeshu, and MENG Xiande. Background clutters statistical characteristics in shipborne radar[J]. Systems Engineering and Electronics, 2002, 24(9): 19–22. doi: 10.3321/j.issn:1001-506X.2002.09.007
    [57] 周超, 刘泉华. Ku波段实验雷达海杂波实测数据分析[J]. 信号处理, 2015, 31(12): 1573–1578. doi: 10.3969/j.issn.1003-0530.2015.12.005

    ZHOU Chao and LIU Quanhua. Analysis of field sea clutter data of Ku band[J]. Journal of Signal Processing, 2015, 31(12): 1573–1578. doi: 10.3969/j.issn.1003-0530.2015.12.005
    [58] 杨俊岭, 李大治, 万建伟, 等. 海杂波尖峰特性研究及仿真分析[J]. 系统仿真学报, 2007, 19(8): 1836–1840. doi: 10.3969/j.issn.1004-731X.2007.08.046

    YANG Junling, LI Dazhi, WAN Jianwei, et al. Sea spike characteristics studies and simulation analyses[J]. Journal of System Simulation, 2007, 19(8): 1836–1840. doi: 10.3969/j.issn.1004-731X.2007.08.046
    [59] XU Shuwen, SHUI Penglang, and YAN Xueying. Non-coherent detection of radar target in heavy-tailed sea clutter using bi-window non-linear shrinkage map[J]. IET Signal Processing, 2016, 10(9): 1031–1039. doi: 10.1049/iet-spr.2015.0564
    [60] 康士峰, 葛德彪, 罗贤云, 等. 多波段多极化海杂波特性的实验研究[J]. 微波学报, 2000, 16(5): 463–468. doi: 10.3969/j.issn.1005-6122.2000.z1.003

    KANG Shifeng, GE Debiao, LUO Xianyun, et al. Experimental study on multi-band and multi-polarization characteristics of sea clutter[J]. Journal of Microwaves, 2000, 16(5): 463–468. doi: 10.3969/j.issn.1005-6122.2000.z1.003
    [61] 张金鹏, 张玉石, 李清亮, 等. 基于不同散射机制特征的海杂波时变多普勒谱模型[J]. 物理学报, 2018, 67(3): 034101. doi: 10.7498/aps.67.20171612

    ZHANG Jinpeng, ZHANG Yushi, LI Qingliang, et al. A time-varying Doppler spectrum model of radar sea clutter based on different scattering mechanisms[J]. Acta Physica Sinica, 2018, 67(3): 034101. doi: 10.7498/aps.67.20171612
    [62] 夏晓云, 黎鑫, 张玉石, 等. 基于相位的岸基雷达地海杂波分割方法[J]. 系统工程与电子技术, 2018, 40(3): 552–556. doi: 10.3969/j.issn.1001-506X.2018.03.10

    XIA Xiaoyun, LI Xin, ZHANG Yushi, et al. Sea-land clutter segmentation method of shore-based radar based on phase information[J]. Systems Engineering and Electronics, 2018, 40(3): 552–556. doi: 10.3969/j.issn.1001-506X.2018.03.10
    [63] 许心瑜, 张玉石, 黎鑫, 等. UHF波段海杂波时间相关性的海浪状态影响分析[J]. 系统工程与电子技术, 2017, 39(6): 1203–1207. doi: 10.3969/j.issn.1001-506X.2017.06.03

    XU Xinyu, ZHANG Yushi, LI Xin, et al. Influence of sea condition on the temporal correlation properties of UHF band sea clutter[J]. Systems Engineering and Electronics, 2017, 39(6): 1203–1207. doi: 10.3969/j.issn.1001-506X.2017.06.03
    [64] 张玉石, 许心瑜, 吴振森, 等. L波段小擦地角海杂波幅度均值与风速关系建模[J]. 电波科学学报, 2015, 30(2): 289–294. doi: 10.13443/j.cjors.2014042001

    ZHANG Yushi, XU Xinyu, WU Zhensen, et al. Modeling windspeed behavior of L-band sea clutter average reflectivity at low grazing angles[J]. Chinese Journal of Radio Science, 2015, 30(2): 289–294. doi: 10.13443/j.cjors.2014042001
    [65] 张玉石, 尹雅磊, 许心瑜, 等. 海杂波测量定标的姿态修正数据处理方法[J]. 电子与信息学报, 2015, 37(3): 607–612. doi: 10.11999/JEIT140659

    ZHANG Yushi, YIN Yalei, XU Xinyu, et al. Data processing method of posture correction for calibration of sea clutter measurement[J]. Journal of Electronics &Information Technology, 2015, 37(3): 607–612. doi: 10.11999/JEIT140659
    [66] 许心瑜, 张玉石, 黎鑫, 等. L波段小擦地角海杂波KK分布建模[J]. 系统工程与电子技术, 2014, 36(7): 1304–1308. doi: 10.3969/j.issn.1001-506X.2014.07.13

    XU Xinyu, ZHANG Yushi, LI Xin, et al. KK distribution modeling with L band low grazing sea clutter[J]. Systems Engineering and Electronics, 2014, 36(7): 1304–1308. doi: 10.3969/j.issn.1001-506X.2014.07.13
    [67] 张玉石, 许心瑜, 尹雅磊, 等. L波段小擦地角海杂波幅度统计特性研究[J]. 电子与信息学报, 2014, 36(5): 1044–1048. doi: 10.3724/SP.J.1146.2013.01139

    ZHANG Yushi, XU Xinyu, YIN Yalei, et al. Research on amplitude statistics of L-band low grazing angle sea clutter[J]. Journal of Electronics &Information Technology, 2014, 36(5): 1044–1048. doi: 10.3724/SP.J.1146.2013.01139
    [68] DING Hao, GUAN Jian, LIU Ningbo, et al. New spatial correlation models for sea clutter[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1833–1837. doi: 10.1109/LGRS.2015.2430371
    [69] DING Hao, GUAN Jian, LIU Ningbo, et al. Modeling of heavy tailed sea clutter based on the generalized central limit theory[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11): 1591–1595. doi: 10.1109/LGRS.2016.2596322
    [70] GUAN J, LIU N B, HUANG Y, et al. Fractal characteristic in frequency domain for target detection within sea clutter[J]. IET Radar, Sonar & Navigation, 2012, 6(5): 293–306. doi: 10.1049/iet-rsn.2011.0250
    [71] GUAN Jian, LIU Ningbo, HUANG Yong, et al. Fractal Poisson model for target detection within spiky sea clutter[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 411–415. doi: 10.1109/LGRS.2012.2203578
    [72] CHEN Xiaolong, GUAN Jian, HE You, et al. Detection of low observable moving target in sea clutter via fractal characteristics in fractional Fourier transform domain[J]. IET Radar, Sonar & Navigation, 2013, 7(6): 635–651. doi: 10.1049/iet-rsn.2012.0116
    [73] CHEN Xiaolong, GUAN Jian, BAO Zhonghua, et al. Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional Fourier transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1002–1018. doi: 10.1109/TGRS.2013.2246574
    [74] CHEN Xiaolong, GUAN Jian, Liu Ningbo, et al. Maneuvering target detection via Radon-fractional Fourier transform-based long-time coherent integration[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 939–953. doi: 10.1109/TSP.2013.2297682
    [75] CHEN Xiaolong, GUAN Jian, HUANG Yong, et al. Radon-linear canonical ambiguity function-based detection and estimation method for marine target with micromotion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2225–2240. doi: 10.1109/TGRS.2014.2358456
    [76] CHEN Xiaolong, HUANG Yong, LIU Ningbo, et al. Radon-fractional ambiguity function-based detection method of low-observable maneuvering target[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 815–833. doi: 10.1109/TAES.2014.130791
    [77] 黄勇, 陈小龙, 关键. 实测海尖峰特性分析及抑制方法[J]. 雷达学报, 2015, 4(3): 334–342. doi: 10.12000/JR14108

    HUANG Yong, CHEN Xiaolong, and GUAN Jian. Property analysis and suppression method of real measured sea spikes[J]. Journal of Radars, 2015, 4(3): 334–342. doi: 10.12000/JR14108
    [78] 苏宁远, 陈小龙, 关键, 等. 基于卷积神经网络的海上微动目标检测与分类方法[J]. 雷达学报, 2018, 7(5): 565–574. doi: 10.12000/JR18077

    SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Detection and classification of maritime target with micro-motion based on CNNs[J]. Journal of Radars, 2018, 7(5): 565–574. doi: 10.12000/JR18077
    [79] 丁昊, 薛永华, 黄勇, 等. 均匀和部分均匀杂波中子空间目标的斜对称自适应检测方法[J]. 雷达学报, 2015, 4(4): 418–430. doi: 10.12000/JR14133

    DING Hao, XUE Yonghua, HUANG Yong, et al. Persymmetric adaptive detectors of subspace signals in homogeneous and partially homogeneous clutter[J]. Journal Radars, 2015, 4(4): 418–430. doi: 10.12000/JR14133
    [80] 丁昊, 王国庆, 刘宁波, 等. 逆Gamma纹理背景下两类子空间目标的自适应检测方法[J]. 雷达学报, 2017, 6(3): 275–284. doi: 10.12000/JR16088

    DING Hao, WANG Guoqing, LIU Ningbo, et al. Adaptive detectors for two types of subspace targets in an inverse Gamma textured background[J]. Journal Radars, 2017, 6(3): 275–284. doi: 10.12000/JR16088
  • 加载中
图(15) / 表(17)
计量
  • 文章访问数:  6625
  • HTML全文浏览量:  2044
  • PDF下载量:  689
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-10
  • 修回日期:  2019-03-07
  • 网络出版日期:  2019-06-01

目录

    /

    返回文章
    返回