A New Method for Parameter Estimation of Attributed Scattering Centers Based on Amplitude-phase Separation
-
摘要: 利用属性散射中心(ASC)参数估计来识别目标上的散射结构是实现合成孔径雷达(SAR)自动目标体识别(ATR)的重要步骤。为提高属性散射中心参数估计的速度并抑制杂散影响,该文首先从图像中提取多个属性散射中心,然后分别估计各个属性散射中心的参数。为提高单个属性散射中心的参数估计速率,考虑到其幅度和相位相关参数可分离,该文提出幅度相位分离的属性散射中心参数估计思想,与传统方法相比,该思想使参数估计算法复杂度和参数估计时间降低了1个数量级。引入迭代半阈值(IHT)算法提高参数估计精度。根据各个属性散射中心的参数估计结果可识别目标上各种散射结构并确定其在目标上的位置分布。仿真数据、实测数据以及MSTAR数据集得到的参数估计的高效性和高准确性,验证了该文所提方法的有效性。
-
关键词:
- 属性散射中心模型 /
- SAR自动目标体识别 /
- 幅度相位分离 /
- L1/2正则化
Abstract: Parameter estimation of Attributed Scattering Centers (ASCs) corresponding to scattering geometries on targets plays an important role in Synthetic Aperture Radar (SAR) imaging-assisted Automatic Target Recognition (ATR). To achieve computational savings and clutter suppression, we extract the measurements of several ASCs and estimate the parameters of each ASC separately. To improve the speed of the estimation process, we propose a method for parameter estimation of ASCs based on amplitude–phase separation that considers a reasonable assumption that the amplitude- and phase-related parameters of an ASC can be estimated separately and independently. Through the proposed method, the complexity and time consumed for parameter estimation are reduced by one order of magnitude than the traditional method. The Iterative Half Thresholding (IHT) algorithm is introduced to enhance the accuracy of parameter estimation. The types and locations of scattering geometries on the target are determined using the estimated ASC parameters. Using simulated data, measured data, and MSTAR data sets, the accuracy and efficiency of parameter estimation are improved and the effectiveness of the proposed method is verified. -
表 1 简单散射结构α取值表
Table 1. Discrimination of canonical scattering geometries from α
$\alpha $的值 对应的散射结构 1.0 宽边平板,二面角 0.5 单曲表面反射 0 点,球,直边镜面 –0.5 边缘衍射 –1.0 拐角衍射 表 2 不同L和α对应典型散射结构
Table 2. Discrimination of canonical scattering geometries from L and α
L $\alpha $ 1.0 0.5 0 =0 三面角 帽顶 双曲面 >0 二面角 圆柱 直边 表 3 仿真参数取值
Table 3. Values of the simulation parameters
参数 分辨率 范围 取值个数 |A| 0.1 [1, 6] 51 L 0.1 m [0, 2] m 21 $\alpha $ 0.5 [–1, 1] 5 $\bar \phi $ 0.5° [–10.5°, 10.5°] 43 x 0.2 m [–2, 2] m 41 y 0.2 m [–2, 2] m 41 phase(A) 0.314 $[{\text{π}} , {\text{π}} ]$ 21 表 4 两种字典构造方法性能对比
Table 4. Performance comparison of the two dictionary construction methods
对比内容 高维联合字典 幅度相位分离字典 运行时间(s) 1029 492 MSE 0.06 0.05 表 5 基于传统方法的多个ASC参数估计结果
Table 5. Estimation results of ASCs parameters using traditional method
ASC参数 S1 S1估计值 S2 S2估计值 S3 S3估计值 |A| 1.00 1.00 6.00 6.12 1.00 0.92 L 0 0 1 1 0 0.2 $\bar \phi $ 0 0 0.5° 0.5° 0 0.5° $\alpha $ 0.5 0.5 0.5 0.5 0.5 0.5 x 1 1 0 0 –1 –1 y 0 0 0 1 1 1 表 6 基于本文方法的多个ASC参数估计结果
Table 6. Estimation results of ASCs parameters using the method this paper proposed
ASC参数 S1 S1估计值 S2 S2估计值 S3 S3估计值 |A| 1.00 1.01 6.00 6.00 1.00 0.98 L 0 0 1 1 0 0.1 $\bar \phi $ 0 0 0.5° 0.5° 0 0 $\alpha $ 0.5 0.5 0.5 0.5 0.5 0.5 x 1 1 0 0 –1 –1 y 0 0 0 0 1 1 表 7 2种ASC参数估计方法性能对比
Table 7. Performance comparison of the two ASC parameters estimation methods
对比内容 传统方法 本文方法 运行时间(s) 1.47 0.17 MSE 0.3536 0.0170 表 8 3个ASC对应散射结构识别结果
Table 8. Recognition results of the scattering geometries corresponding to the three ASCs
S1 S2 S3 帽顶 圆柱 帽顶 表 9 ASC参数估计结果
Table 9. Estimated parameters of the 2 ASCs
参数 1 2 A –3.132+3.41j 4.0558 L (m) 0.4 0 $\bar \phi $ –0.5° 0.5° $\gamma $ 0 4.1034e–10 $\alpha $ 0.5 0 x (m) 119.6248 120.1499 y (m) –0.29845 0.2863 表 10 ASC对应散射结构判定结果
Table 10. Recognition results of the scattering geometries corresponding to the 2 ASCs
1 2 圆柱 点 表 11 ASC参数估计结果及对应散射结构判定结果
Table 11. Estimation results of the ASCs parameters and the recognitionresults of the scattering geometries corresponding to these ASCs
第几个散射中心 1 2 3 4 5 6 7 8 L(m) 2.67 4 0 0 0 0 0 0 $\alpha $ 0.5 0.5 –0.5 1 0.5 0 1 1 散射结构类型 圆柱 圆柱 边缘绕射 三角面 帽顶 双曲面 三角面 三角面 第几个散射中心 9 10 11 12 13 14 15 16 L(m) 0.89 0.89 0.44 0 0 0 0 0 $\alpha $ 0 0 0 0 1 0 1 0.5 散射结构类型 直边 直边 直边 双曲面 三角面 双曲面 三角面 帽顶 -
[1] 钟金荣. 目标三维电磁散射参数化模型反演方法研究[D]. [博士论文], 国防科学技术大学, 2016: 1–7.ZHONG Jinrong. Inverse methods for three dimensional parametric scattering model of target[D]. [Ph.D. dissertation], National University of Defense Technology, 2016: 1–7. [2] FRIEDLANDER R D, LEVY M, SUDKAMP E, et al. Deep learning model-based algorithm for SAR ATR[C]. Proceedings of Algorithms for Synthetic Aperture Radar Imagery XXV, Orlando, United States, 2018: 106470B. doi: 10.1117/12.2315265. [3] PEI Jifang, HUANG Yulin, HUO Weibo, et al. SAR automatic target recognition based on multiview deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2196–2210. doi: 10.1109/TGRS.2017.2776357 [4] ZHAO Pengfei, LIU Kai, ZOU Hao, et al. Multi-stream convolutional neural network for SAR automatic target recognition[J]. Remote Sensing, 2018, 10(9): 1473. doi: 10.3390/rs10091473 [5] DUAN Jia, ZHANG Lei, XING Mengdao, et al. Polarimetric target decomposition based on attributed scattering center model for synthetic aperture radar targets[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12): 2095–2099. doi: 10.1109/lgrs.2014.2320053 [6] DING Baiyuan and WEN Gongjian. Target reconstruction based on 3-D scattering center model for robust SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7): 3772–3785. doi: 10.1109/TGRS.2018.2810181 [7] 文贡坚, 朱国强, 殷红成, 等. 基于三维电磁散射参数化模型的SAR目标识别方法[J]. 雷达学报, 2017, 6(2): 115–135. doi: 10.12000/JR17034WEN Gongjian, ZHU Guoqiang, YIN Hongcheng, et al. SAR ATR based on 3D parametric electromagnetic scattering model[J]. Journal of Radars, 2017, 6(2): 115–135. doi: 10.12000/JR17034 [8] 张亚军. 基于属性散射中心模型的SAR自动目标识别[D]. [硕士论文], 西安电子科技大学, 2014: 5–23.ZHANG Yajun. SAR automatic target recognition based on attributed scattering center models[D]. [Master dissertation], Xidian University, 2014: 5–23. [9] AKYILDIZ Y and MOSES R L. Scattering center model for SAR imagery[C]. Proceedings of SPIE 3869, SAR Image Analysis, Modeling, and Techniques II, Florence, Italy, 1999: 76–85. doi: 10.1117/12.373151. [10] CHIANG H C, MOSES R L, and POTTER L C. Model-based classification of radar images[J]. IEEE Transactions on Information Theory, 2000, 46(5): 1842–1854. doi: 10.1109/18.857795 [11] DING Baiyuan, WEN Gongjian, HUANG Xiaohong, et al. Target recognition in synthetic aperture radar images via matching of attributed scattering centers[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(7): 3334–3347. doi: 10.1109/JSTARS.2017.2671919 [12] DING Baiyuan, WEN Gongjian, ZHONG Jinrong, et al. A robust similarity measure for attributed scattering center sets with application to SAR ATR[J]. Neurocomputing, 2017, 219: 130–143. doi: 10.1016/j.neucom.2016.09.007 [13] 段佳, 张磊, 盛佳恋, 等. 独立属性散射中心参数降耦合估计方法[J]. 电子与信息学报, 2012, 34(8): 1853–1859. doi: 10.3724/SP.J.1146.2011.01302DUAN Jia, ZHANG Lei, SHENG Jialian, et al. Parameters decouple and estimation of independent attributed scattering centers[J]. Journal of Electronics &Information Technology, 2012, 34(8): 1853–1859. doi: 10.3724/SP.J.1146.2011.01302 [14] 段佳, 张磊, 邢孟道, 等. 合成孔径雷达目标特征提取新方法[J]. 西安电子科技大学学报: 自然科学版, 2014, 41(4): 13–19. doi: 10.3969/j.issn.1001-2400.2014.04.003DUAN Jia, ZHANG Lei, XING Mengdao, et al. Novel feature extraction method for synthetic aperture radar targets[J]. Journal of Xidian University, 2014, 41(4): 13–19. doi: 10.3969/j.issn.1001-2400.2014.04.003 [15] 海鸿璋. 基于ISAR图像的舰船目标特征提取方法研究[D]. [硕士论文], 西安电子科技大学, 2014: 44–49.HAI Hongzhang. Study on feature extraction of ships based on ISAR images[D]. [Master dissertation], Xidian University, 2014: 44–49. [16] 李飞, 纠博, 刘宏伟, 等. 基于稀疏表示的SAR图像属性散射中心参数估计算法[J]. 电子与信息学报, 2014, 36(4): 931–937. doi: 10.3724/SP.J.1146.2013.00576LI Fei, JIU Bo, LIU Hongwei, et al. Sparse representation based algorithm for estimation of attributed scattering center parameter on SAR imagery[J]. Journal of Electronics & Information Technology, 2014, 36(4): 931–937. doi: 10.3724/SP.J.1146.2013.00576 [17] 李飞. 雷达图像目标特征提取方法研究[D]. [博士论文], 西安电子科技大学, 2014: 50–66.LI Fei. Study on target feature extraction based on radar image[D]. [Ph.D. dissertation], Xidian University, 2014: 50–66. [18] LIU Hongwei, JIU Bo, LI Fei, et al. Attributed scattering center extraction algorithm based on sparse representation with dictionary refinement[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2604–2614. doi: 10.1109/TAP.2017.2673764 [19] 苏伍各. 基于稀疏贝叶斯重构方法的雷达成像技术研究[D]. [博士论文], 国防科学技术大学, 2015: 3–14.SU Wuge. Radar imaging techiniques based on sparse Bayesian reconstruction methods[D]. [Ph.D. dissertation], National University of Defense Technology, 2015: 3–14. [20] LI Zenghui, JIN Kan, XU Bin, et al. An improved attributed scattering model optimized by incremental sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 2973–2987. doi: 10.1109/TGRS.2015.2509539 [21] XU Zongben. Data Modeling: Visual Psychology Approach and L1/2 Regularization Theory[M]. BHATIA R, PAL A, RANGARAJAN G, et al. Proceedings of the International Congress of Mathematicians. Hyderabad, India: World Scientific, 2010: 3151–3184. doi: 10.1142/9789814324359_0184. [22] 徐宗本, 吴一戎, 张冰尘, 等. 基于L1/2正则化理论的稀疏雷达成像[J]. 科学通报, 2018, 63(14): 1307–1319. doi: 10.1360/N972018-00372XU Zongben, WU Yirong, ZHANG Bingchen, et al. Sparse radar imaging based on L1/2 regularization theory[J]. Chinese Science Bulletin, 2018, 63(14): 1307–1319. doi: 10.1360/N972018-00372 [23] GERRY M J, POTTER L C, GUPTA I J, et al. A parametric model for synthetic aperture radar measurements[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(7): 1179–1188. doi: 10.1109/8.785750 [24] POTTER L C and MOSES R L. Attributed scattering centers for SAR ATR[J]. IEEE Transactions on Image Processing, 1997, 6(1): 79–91. doi: 10.1109/83.552098 [25] KELLER J B. Geometrical theory of diffraction[J]. Journal of the Optical Society of America, 1962, 52(2): 116–130. doi: 10.1364/JOSA.52.000116 [26] ÇETİN M. Feature-enhanced synthetic aperture radar imaging[D]. [Ph.D. dissertation], Boston University, 2001. [27] 清风亦客. T-72主战坦克[EB/OL]. https://baike.baidu.com/item/T-72主战坦克/2031530?fr=aladdin, 2019.Qing Fengyike. T-72 main battle tank[EB/OL]. https://baike.baidu.com/item/T-72主战坦克/2031530?fr=aladdin, 2019.