基于幅相分离的属性散射中心参数估计新方法

蒋文 李王哲

蒋文, 李王哲. 基于幅相分离的属性散射中心参数估计新方法[J]. 雷达学报, 2019, 8(5): 606–615. doi: 10.12000/JR18097
引用本文: 蒋文, 李王哲. 基于幅相分离的属性散射中心参数估计新方法[J]. 雷达学报, 2019, 8(5): 606–615. doi: 10.12000/JR18097
JIANG Wen and LI Wangzhe. A new method for parameter estimation of attributed scattering centers based on amplitude-phase separation[J]. Journal of Radars, 2019, 8(5): 606–615. doi: 10.12000/JR18097
Citation: JIANG Wen and LI Wangzhe. A new method for parameter estimation of attributed scattering centers based on amplitude-phase separation[J]. Journal of Radars, 2019, 8(5): 606–615. doi: 10.12000/JR18097

基于幅相分离的属性散射中心参数估计新方法

DOI: 10.12000/JR18097
基金项目: 国家自然科学基金(61701476, 61690191)
详细信息
    作者简介:

    蒋 文(1994–),女,2016年获得西安电子科技大学学士学位,现于中国科学院大学攻读硕士学位。研究方向是微波成像技术。E-mail: jiangwen16@mails.ucas.ac.cn

    李王哲(1983–),男,青年千人,现为中国科学院电子学研究所研究员,微波成像技术国家级重点实验室主任。研究方向有基于光子技术的合成孔径雷达(SAR),基于微波成像的微波光子传感器,微波光子模块芯片集成。 E-mail: wzli@mail.ie.ac.cn

    通讯作者:

    李王哲 wzli@mail.ie.ac.cn

  • 中图分类号: TN957.52

A New Method for Parameter Estimation of Attributed Scattering Centers Based on Amplitude-phase Separation

Funds: The National Natural Science Foundation of China (61701476, 61690191)
More Information
  • 摘要: 利用属性散射中心(ASC)参数估计来识别目标上的散射结构是实现合成孔径雷达(SAR)自动目标体识别(ATR)的重要步骤。为提高属性散射中心参数估计的速度并抑制杂散影响,该文首先从图像中提取多个属性散射中心,然后分别估计各个属性散射中心的参数。为提高单个属性散射中心的参数估计速率,考虑到其幅度和相位相关参数可分离,该文提出幅度相位分离的属性散射中心参数估计思想,与传统方法相比,该思想使参数估计算法复杂度和参数估计时间降低了1个数量级。引入迭代半阈值(IHT)算法提高参数估计精度。根据各个属性散射中心的参数估计结果可识别目标上各种散射结构并确定其在目标上的位置分布。仿真数据、实测数据以及MSTAR数据集得到的参数估计的高效性和高准确性,验证了该文所提方法的有效性。

     

  • 图  1  本文所提ASC参数估计流程图

    Figure  1.  Flow chart of the method for estimation of ASC parameters proposed in this paper

    图  2  原始算法与本文算法性能比较图

    Figure  2.  Performance comparison of the traditional method and the method this paper proposed

    图  3  实验场景及成像结果

    Figure  3.  Experimental filed and ISAR images

    图  4  T72光学图像

    Figure  4.  T72 optical image

    图  5  多幅T72 SAR图像

    Figure  5.  Various T72 SAR images

    图  6  各个ASC对应散射结构位置分布图

    Figure  6.  Estimated position distribution map of scattering geometries corresponding to the ASCs

    表  1  简单散射结构α取值表

    Table  1.   Discrimination of canonical scattering geometries from α

    $\alpha $的值对应的散射结构
    1.0宽边平板,二面角
    0.5单曲表面反射
    0点,球,直边镜面
    –0.5边缘衍射
    –1.0拐角衍射
    下载: 导出CSV

    表  2  不同L和α对应典型散射结构

    Table  2.   Discrimination of canonical scattering geometries from L and α

    L$\alpha $
    1.00.50
    =0三面角帽顶双曲面
    >0二面角圆柱直边
    下载: 导出CSV

    表  3  仿真参数取值

    Table  3.   Values of the simulation parameters

    参数分辨率范围取值个数
    |A|0.1[1, 6]51
    L0.1 m[0, 2] m21
    $\alpha $0.5[–1, 1]5
    $\bar \phi $0.5°[–10.5°, 10.5°]43
    x0.2 m[–2, 2] m41
    y0.2 m[–2, 2] m41
    phase(A)0.314$[{\text{π}} , {\text{π}} ]$21
    下载: 导出CSV

    表  4  两种字典构造方法性能对比

    Table  4.   Performance comparison of the two dictionary construction methods

    对比内容高维联合字典幅度相位分离字典
    运行时间(s)1029492
    MSE0.060.05
    下载: 导出CSV

    表  5  基于传统方法的多个ASC参数估计结果

    Table  5.   Estimation results of ASCs parameters using traditional method

    ASC参数S1S1估计值S2S2估计值S3S3估计值
    |A|1.001.006.006.121.000.92
    L001100.2
    $\bar \phi $000.5°0.5°00.5°
    $\alpha $0.50.50.50.50.50.5
    x1100–1–1
    y000111
    下载: 导出CSV

    表  6  基于本文方法的多个ASC参数估计结果

    Table  6.   Estimation results of ASCs parameters using the method this paper proposed

    ASC参数S1S1估计值S2S2估计值S3S3估计值
    |A|1.001.016.006.001.000.98
    L001100.1
    $\bar \phi $000.5°0.5°00
    $\alpha $0.50.50.50.50.50.5
    x1100–1–1
    y000011
    下载: 导出CSV

    表  7  2种ASC参数估计方法性能对比

    Table  7.   Performance comparison of the two ASC parameters estimation methods

    对比内容传统方法本文方法
    运行时间(s)1.470.17
    MSE0.35360.0170
    下载: 导出CSV

    表  8  3个ASC对应散射结构识别结果

    Table  8.   Recognition results of the scattering geometries corresponding to the three ASCs

    S1S2S3
    帽顶圆柱帽顶
    下载: 导出CSV

    表  9  ASC参数估计结果

    Table  9.   Estimated parameters of the 2 ASCs

    参数12
    A–3.132+3.41j4.0558
    L (m)0.40
    $\bar \phi $–0.5°0.5°
    $\gamma $04.1034e–10
    $\alpha $0.50
    x (m)119.6248120.1499
    y (m)–0.298450.2863
    下载: 导出CSV

    表  10  ASC对应散射结构判定结果

    Table  10.   Recognition results of the scattering geometries corresponding to the 2 ASCs

    12
    圆柱
    下载: 导出CSV

    表  11  ASC参数估计结果及对应散射结构判定结果

    Table  11.   Estimation results of the ASCs parameters and the recognitionresults of the scattering geometries corresponding to these ASCs

    第几个散射中心12345678
    L(m)2.674000000
    $\alpha $0.50.5–0.510.5011
    散射结构类型圆柱圆柱边缘绕射三角面帽顶双曲面三角面三角面
    第几个散射中心910111213141516
    L(m)0.890.890.4400000
    $\alpha $00001010.5
    散射结构类型直边直边直边双曲面三角面双曲面三角面帽顶
    下载: 导出CSV
  • [1] 钟金荣. 目标三维电磁散射参数化模型反演方法研究[D]. [博士论文], 国防科学技术大学, 2016: 1–7.

    ZHONG Jinrong. Inverse methods for three dimensional parametric scattering model of target[D]. [Ph.D. dissertation], National University of Defense Technology, 2016: 1–7.
    [2] FRIEDLANDER R D, LEVY M, SUDKAMP E, et al. Deep learning model-based algorithm for SAR ATR[C]. Proceedings of Algorithms for Synthetic Aperture Radar Imagery XXV, Orlando, United States, 2018: 106470B. doi: 10.1117/12.2315265.
    [3] PEI Jifang, HUANG Yulin, HUO Weibo, et al. SAR automatic target recognition based on multiview deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2196–2210. doi: 10.1109/TGRS.2017.2776357
    [4] ZHAO Pengfei, LIU Kai, ZOU Hao, et al. Multi-stream convolutional neural network for SAR automatic target recognition[J]. Remote Sensing, 2018, 10(9): 1473. doi: 10.3390/rs10091473
    [5] DUAN Jia, ZHANG Lei, XING Mengdao, et al. Polarimetric target decomposition based on attributed scattering center model for synthetic aperture radar targets[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12): 2095–2099. doi: 10.1109/lgrs.2014.2320053
    [6] DING Baiyuan and WEN Gongjian. Target reconstruction based on 3-D scattering center model for robust SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7): 3772–3785. doi: 10.1109/TGRS.2018.2810181
    [7] 文贡坚, 朱国强, 殷红成, 等. 基于三维电磁散射参数化模型的SAR目标识别方法[J]. 雷达学报, 2017, 6(2): 115–135. doi: 10.12000/JR17034

    WEN Gongjian, ZHU Guoqiang, YIN Hongcheng, et al. SAR ATR based on 3D parametric electromagnetic scattering model[J]. Journal of Radars, 2017, 6(2): 115–135. doi: 10.12000/JR17034
    [8] 张亚军. 基于属性散射中心模型的SAR自动目标识别[D]. [硕士论文], 西安电子科技大学, 2014: 5–23.

    ZHANG Yajun. SAR automatic target recognition based on attributed scattering center models[D]. [Master dissertation], Xidian University, 2014: 5–23.
    [9] AKYILDIZ Y and MOSES R L. Scattering center model for SAR imagery[C]. Proceedings of SPIE 3869, SAR Image Analysis, Modeling, and Techniques II, Florence, Italy, 1999: 76–85. doi: 10.1117/12.373151.
    [10] CHIANG H C, MOSES R L, and POTTER L C. Model-based classification of radar images[J]. IEEE Transactions on Information Theory, 2000, 46(5): 1842–1854. doi: 10.1109/18.857795
    [11] DING Baiyuan, WEN Gongjian, HUANG Xiaohong, et al. Target recognition in synthetic aperture radar images via matching of attributed scattering centers[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(7): 3334–3347. doi: 10.1109/JSTARS.2017.2671919
    [12] DING Baiyuan, WEN Gongjian, ZHONG Jinrong, et al. A robust similarity measure for attributed scattering center sets with application to SAR ATR[J]. Neurocomputing, 2017, 219: 130–143. doi: 10.1016/j.neucom.2016.09.007
    [13] 段佳, 张磊, 盛佳恋, 等. 独立属性散射中心参数降耦合估计方法[J]. 电子与信息学报, 2012, 34(8): 1853–1859. doi: 10.3724/SP.J.1146.2011.01302

    DUAN Jia, ZHANG Lei, SHENG Jialian, et al. Parameters decouple and estimation of independent attributed scattering centers[J]. Journal of Electronics &Information Technology, 2012, 34(8): 1853–1859. doi: 10.3724/SP.J.1146.2011.01302
    [14] 段佳, 张磊, 邢孟道, 等. 合成孔径雷达目标特征提取新方法[J]. 西安电子科技大学学报: 自然科学版, 2014, 41(4): 13–19. doi: 10.3969/j.issn.1001-2400.2014.04.003

    DUAN Jia, ZHANG Lei, XING Mengdao, et al. Novel feature extraction method for synthetic aperture radar targets[J]. Journal of Xidian University, 2014, 41(4): 13–19. doi: 10.3969/j.issn.1001-2400.2014.04.003
    [15] 海鸿璋. 基于ISAR图像的舰船目标特征提取方法研究[D]. [硕士论文], 西安电子科技大学, 2014: 44–49.

    HAI Hongzhang. Study on feature extraction of ships based on ISAR images[D]. [Master dissertation], Xidian University, 2014: 44–49.
    [16] 李飞, 纠博, 刘宏伟, 等. 基于稀疏表示的SAR图像属性散射中心参数估计算法[J]. 电子与信息学报, 2014, 36(4): 931–937. doi: 10.3724/SP.J.1146.2013.00576

    LI Fei, JIU Bo, LIU Hongwei, et al. Sparse representation based algorithm for estimation of attributed scattering center parameter on SAR imagery[J]. Journal of Electronics & Information Technology, 2014, 36(4): 931–937. doi: 10.3724/SP.J.1146.2013.00576
    [17] 李飞. 雷达图像目标特征提取方法研究[D]. [博士论文], 西安电子科技大学, 2014: 50–66.

    LI Fei. Study on target feature extraction based on radar image[D]. [Ph.D. dissertation], Xidian University, 2014: 50–66.
    [18] LIU Hongwei, JIU Bo, LI Fei, et al. Attributed scattering center extraction algorithm based on sparse representation with dictionary refinement[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2604–2614. doi: 10.1109/TAP.2017.2673764
    [19] 苏伍各. 基于稀疏贝叶斯重构方法的雷达成像技术研究[D]. [博士论文], 国防科学技术大学, 2015: 3–14.

    SU Wuge. Radar imaging techiniques based on sparse Bayesian reconstruction methods[D]. [Ph.D. dissertation], National University of Defense Technology, 2015: 3–14.
    [20] LI Zenghui, JIN Kan, XU Bin, et al. An improved attributed scattering model optimized by incremental sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 2973–2987. doi: 10.1109/TGRS.2015.2509539
    [21] XU Zongben. Data Modeling: Visual Psychology Approach and L1/2 Regularization Theory[M]. BHATIA R, PAL A, RANGARAJAN G, et al. Proceedings of the International Congress of Mathematicians. Hyderabad, India: World Scientific, 2010: 3151–3184. doi: 10.1142/9789814324359_0184.
    [22] 徐宗本, 吴一戎, 张冰尘, 等. 基于L1/2正则化理论的稀疏雷达成像[J]. 科学通报, 2018, 63(14): 1307–1319. doi: 10.1360/N972018-00372

    XU Zongben, WU Yirong, ZHANG Bingchen, et al. Sparse radar imaging based on L1/2 regularization theory[J]. Chinese Science Bulletin, 2018, 63(14): 1307–1319. doi: 10.1360/N972018-00372
    [23] GERRY M J, POTTER L C, GUPTA I J, et al. A parametric model for synthetic aperture radar measurements[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(7): 1179–1188. doi: 10.1109/8.785750
    [24] POTTER L C and MOSES R L. Attributed scattering centers for SAR ATR[J]. IEEE Transactions on Image Processing, 1997, 6(1): 79–91. doi: 10.1109/83.552098
    [25] KELLER J B. Geometrical theory of diffraction[J]. Journal of the Optical Society of America, 1962, 52(2): 116–130. doi: 10.1364/JOSA.52.000116
    [26] ÇETİN M. Feature-enhanced synthetic aperture radar imaging[D]. [Ph.D. dissertation], Boston University, 2001.
    [27] 清风亦客. T-72主战坦克[EB/OL]. https://baike.baidu.com/item/T-72主战坦克/2031530?fr=aladdin, 2019.

    Qing Fengyike. T-72 main battle tank[EB/OL]. https://baike.baidu.com/item/T-72主战坦克/2031530?fr=aladdin, 2019.
  • 加载中
图(6) / 表(11)
计量
  • 文章访问数:  3753
  • HTML全文浏览量:  1077
  • PDF下载量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-15
  • 修回日期:  2019-04-09
  • 网络出版日期:  2019-10-01

目录

    /

    返回文章
    返回