近场毫米波三维成像与异物检测方法

师君 阙钰佳 周泽南 周远远 张晓玲 孙铭芳

师君, 阙钰佳, 周泽南, 等. 近场毫米波三维成像与异物检测方法[J]. 雷达学报, 2019, 8(5): 578–588. doi: 10.12000/JR18089
引用本文: 师君, 阙钰佳, 周泽南, 等. 近场毫米波三维成像与异物检测方法[J]. 雷达学报, 2019, 8(5): 578–588. doi: 10.12000/JR18089
SHI Jun, QUE Yujia, ZHOU Zenan, et al. Near-field millimeter wave 3D imaging and object detection method[J]. Journal of Radars, 2019, 8(5): 578–588. doi: 10.12000/JR18089
Citation: SHI Jun, QUE Yujia, ZHOU Zenan, et al. Near-field millimeter wave 3D imaging and object detection method[J]. Journal of Radars, 2019, 8(5): 578–588. doi: 10.12000/JR18089

近场毫米波三维成像与异物检测方法

DOI: 10.12000/JR18089
基金项目: 国家自然科学基金(61671113)
详细信息
    作者简介:

    师 君(1979–),男,河南南阳人,博士,电子科技大学信息与通信工程学院副教授,主要从事SAR成像技术、雷达信号处理研究,已发表论文50余篇。E-mail: shijun@uestc.edu.cn

    阙钰佳(1993–),男,福建龙岩人,电子科技大学硕士生,主要从事阵列3维SAR成像及目标识别技术研究。E-mail: queyujia1993@163.com

    周泽南(1997–),男,海南海口人,电子科技大学硕士生,主要从事深度学习技术在SAR图像的应用研究。E-mail: 2942714332@qq.com

    周远远(1992–),男,山东金乡人,电子科技大学博士生,主要从事深度学习技术在SAR图像的应用研究。E-mail: 732156543@qq.com

    张晓玲(1964–),女,四川成都人,博士,电子科技大学信息与通信工程学院教授,主要从事SAR成像技术、雷达探测技术研究,已发表论文50余篇。E-mail: xlzhang@uestc.edu.cn

    孙铭芳(1981–),男,辽宁本溪人,硕士,北京华航无线电测量研究所高工,从事无线电导航与引信,SAR成像,雷达信号处理研究。E-mail: sunmf125@163.com

    通讯作者:

    师君 shijun@uestc.edu.cn

  • 责任主编:陈杰 Corresponding Editor: CHEN Jie
  • 中图分类号: TN957.52

Near-field Millimeter Wave 3D Imaging and Object Detection Method

Funds: The National Natural Science Foundation of China (61671113)
More Information
  • 摘要: 主动式毫米波阵列3维成像系统是人体安检成像系统的研究热点,该文对主动式毫米波阵列3维系统工作模式、信号模型和成像算法进行了介绍,并将深度学习中的卷积神经网络(CNN)热图检测方法和边框回归检测技术应用于人体安检成像异物检测。研究表明,基于热图的检测方法和基于YOLO的检测方法均可实现异物检测。基于热图的检测方法网络结构简单、易训练,但由于需要遍历整幅待检测图像,运算时间长,且生成的检测框尺寸固定,无法适应异物尺寸变化。基于YOLO的检测算法网络结构复杂、训练耗时长,但该方法在检测速度与检测框精度上优势明显,更利于机场安检等对实时性要求较高的检测应用。

     

  • 图  1  近场毫米波3维成像几何模型

    Figure  1.  The geometric model of near field millimeter wave 3D imaging

    图  2  2维成像结果

    Figure  2.  The 2D imaging result

    图  3  CNN结构

    Figure  3.  The CNN structure

    图  4  基于热图的目标检测结构

    Figure  4.  The target detection structure based on heat map

    图  5  YOLO的训练流程

    Figure  5.  The training process of YOLO

    图  6  非极大值抑制算法去除重复预测框

    Figure  6.  Removal of repeated prediction box by NMS algorithms

    图  7  原始实测成像图

    Figure  7.  The original measured image

    图  8  图像处理后成像图

    Figure  8.  The image after processing

    图  9  训练分类网络的样本

    Figure  9.  Samples of training classification network

    图  10  分类网络训练过程中平均损失和准确率

    Figure  10.  The average loss and accuracy in classification network training

    图  11  YOLO网络训练过程中的平均损失

    Figure  11.  The average loss in YOLO network training

    图  12  YOLO网络检测结果随图像尺寸变化情况

    Figure  12.  YOLO network detection results of different image size

    图  13  YOLO测试结果(不同训练次数)

    Figure  13.  YOLO test results (different training numbers)

    图  14  基于热图和YOLO检测结果

    Figure  14.  Test results based on heat map and YOLO

    表  1  YOLO网络检测结果(%)

    Table  1.   The YOLO network detection results (%)

    类名平均精确率(AP)
    gun95.43
    phone89.86
    knife90.88
    mAP92.06
    下载: 导出CSV
  • [1] CURRIE N C, DEMMA F J, FERRIS D D JR, et al. ARPA/NIJ/Rome laboratory concealed weapon detection program: An overview[C]. Proceedings of SPIE 2755, Signal Processing, Sensor Fusion, and Target Recognition V, Orlando, USA, 1996: 492–502.
    [2] FARHAT N H and GUARD W R. Millimeter wave holographic imaging of concealed weapons[J]. Proceedings of the IEEE, 1971, 59(9): 1383–1384. doi: 10.1109/PROC.1971.8441
    [3] GONZALEZ-VALDES B, ALLAN G, RODRIGUEZ-VAQUEIRO Y, et al. Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(4): 1716–1722. doi: 10.1109/TAP.2013.2290801
    [4] 成彬彬, 李慧萍, 安健飞, 等. 太赫兹成像技术在站开式安检中的应用[J]. 太赫兹科学与电子信息学报, 2015, 13(6): 843–848. doi: 10.11805/TKYDA201506.0843

    CHENG Binbin, LI Huiping, AN Jianfei, et al. Application of terahertz imaging in standoff security inspection[J]. Journal of Terahertz Science and Electronic Information Technology, 2015, 13(6): 843–848. doi: 10.11805/TKYDA201506.0843
    [5] 温鑫, 黄培康, 年丰, 等. 主动式毫米波近距离圆柱扫描三维成像系统[J]. 系统工程与电子技术, 2014, 36(6): 1044–1049. doi: 10.3969/j.issn.1001-506X.2014.06.05

    WEN Xin, HUANG Peikang, NIAN Feng, et al. Active millimeter-wave near-field cylindrical scanning three-dimensional imaging system[J]. Systems Engineering and Electronics, 2014, 36(6): 1044–1049. doi: 10.3969/j.issn.1001-506X.2014.06.05
    [6] APPLEBY R and WALLACE H B. Standoff detection of weapons and contraband in the 100 GHz to 1 THz region[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(11): 2944–2956. doi: 10.1109/TAP.2007.908543
    [7] DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 886–893.
    [8] AHONEN T, HADID A, and PIETIKAINEN M. Face description with local binary patterns: Application to face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12): 2037–2041. doi: 10.1109/TPAMI.2006.244
    [9] VIOLA P and JONES M. Rapid object detection using a boosted cascade of simple features[C]. Proceedings of 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, USA, 2001: I-511–I-518. doi: 10.1109/CVPR.2001.990517.
    [10] Kelly E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(2): 115–127. doi: 10.1109/TAES.1986.310745
    [11] KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
    [12] SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv: 1409.1556, 2014.
    [13] GIRSHICK R. Fast R-CNN[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448.
    [14] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 91–99.
    [15] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
    [16] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
    [17] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37.
    [18] GOMEZ-MAQUEDA I, ALMOROX-GONZALEZ P, CALLEJERO-ANDRES C, et al. A millimeter-wave imager using an illuminating source[J]. IEEE Microwave Magazine, 2013, 14(4): 132–138. doi: 10.1109/MMM.2013.2248652
    [19] 师君. 双基地SAR与线阵SAR原理及成像技术研究[D]. [博士论文], 电子科技大学, 2009.

    SHI Jun. Research on principles and imaging techniques of bistatic SAR & LASAR[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2009.
    [20] ROTHE R, GUILLAUMIN M, and VAN GOOL L. Non-maximum suppression for object detection by passing messages between windows[C]. Proceedings of the 12th Asian Conference on Computer Vision, Singapore, 2014: 290–306.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  3910
  • HTML全文浏览量:  1947
  • PDF下载量:  456
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-22
  • 修回日期:  2019-07-02
  • 网络出版日期:  2019-10-01

目录

    /

    返回文章
    返回