杂波背景下基于概率假设密度的辅助粒子滤波检测前跟踪改进算法

裴家正 黄勇 董云龙 何友 陈小龙

裴家正, 黄勇, 董云龙, 等. 杂波背景下基于概率假设密度的辅助粒子滤波检测前跟踪改进算法[J]. 雷达学报, 2019, 8(3): 355–365. doi: 10.12000/JR18060
引用本文: 裴家正, 黄勇, 董云龙, 等. 杂波背景下基于概率假设密度的辅助粒子滤波检测前跟踪改进算法[J]. 雷达学报, 2019, 8(3): 355–365. doi: 10.12000/JR18060
PEI Jiazheng, HUANG Yong, DONG Yunlong, et al. Track-before-detect algorithm based on improved auxiliary particle PHD filter under clutter background[J]. Journal of Radars, 2019, 8(3): 355–365. doi: 10.12000/JR18060
Citation: PEI Jiazheng, HUANG Yong, DONG Yunlong, et al. Track-before-detect algorithm based on improved auxiliary particle PHD filter under clutter background[J]. Journal of Radars, 2019, 8(3): 355–365. doi: 10.12000/JR18060

杂波背景下基于概率假设密度的辅助粒子滤波检测前跟踪改进算法

DOI: 10.12000/JR18060
基金项目: 国家自然科学基金(U1633122, 61871391, 61471382, 61531020, 61671462),国防科技基金(2102024),中国科协“青年人才托举工程”专项经费(YESS20160115)
详细信息
    作者简介:

    裴家正(1994–),男,河南郑州人,海军航空大学博士研究生,主要研究方向为雷达弱小目标检测前跟踪。E-mail: roycerover@163.com

    黄 勇(1979–),男,湖南汨罗人,海军航空大学副教授,主要研究方向为MIMO雷达目标检测算法等。E-mail: huangyong_2003@163.com

    董云龙(1974–),男,天津宝坻人,海军航空大学副研究员,主要研究方向为雷达组网、多传感器信息融合。E-mail: china_dyl@sina.com

    何 友(1956–),男,吉林磐石人,中国工程院院士,主要研究方向为雷达子适应检测方法、多传感信息融合、多目标跟踪、分布检测理论及应用、系统仿真与作战模拟等。E-mail: heyouhjhy@126.com

    陈小龙(1985–),男,山东烟台人,海军航空大学副教授,主要研究方向为雷达动目标检测、海杂波抑制、雷达信号精细化处理等。E-mail: cxlcxl1203@163.com

    通讯作者:

    黄勇  huangyong_2003@163.com

  • 中图分类号: TN953; TN957

Track-Before-Detect Algorithm Based on Improved Auxiliary Particle PHD Filter under Clutter Background

Funds: The National Natural Science Foundation of China (U1633122, 61871391, 61471382, 61531020, 61671462), National Defense Science Foundation (2102024), Young Elite Scientist Sponsorship Program of CAST (YESS20160115)
More Information
  • 摘要: 在杂波背景条件下,现有的基于概率假设密度(PHD)滤波的粒子滤波检测前跟踪(TBD)算法,存在对密集多目标数目估计不准,使用粒子数目较多会造成维数灾难的问题。因此,该文引入两层粒子的概念,将基于平行分割(PP)理论的辅助粒子滤波(APF)应用于基于概率假设密度的检测前跟踪 (PHD-TBD)算法中,提出基于概率假设密度滤波的平行分割辅助粒子滤波检测前跟踪(APP-PF-PHD-TBD)算法以提高目标数目及状态估计精度。仿真实验证明,相对于现有基于PHD的粒子滤波检测前跟踪算法,该算法在目标数目和状态估计精度上具有显著的性能优势,在密集目标场景下,优势尤为突出。最后,利用导航雷达实测所得海杂波背景数据证明,该算法在应用中性能更加优异。

     

  • 图  2  实验1 8 dB时两种方法的目标数目检测性能对比

    Figure  2.  Exp.1 the performance of the two method in 8 dB

    图  1  实验1 9 dB时两种方法的目标数目检测性能对比

    Figure  1.  Exp.1 the performance of the two method in 9 dB

    图  3  实验1 6 dB时两种方法的目标数目检测性能对比

    Figure  3.  Exp.1 the performance of the two method in 6 dB

    图  5  实验2 8 dB时两种方法的目标数目检测性能对比

    Figure  5.  Exp.2 the performance of the two method in 8 dB

    图  4  实验2 9 dB时两种方法的目标数目检测性能对比

    Figure  4.  Exp.2 the performance of the two method in 9 dB

    图  6  实验2 6 dB时两种方法的目标数目检测性能对比

    Figure  6.  Exp.2 the performance of the two method in 6 dB

    图  7  加入目标后雷达第20帧扫描的数据信息

    Figure  7.  The data of the 20th scan after adding the targets

    图  8  实验3两种方法目标检测数目对比

    Figure  8.  The comparison of the detected targets number in Exp.3

    图  9  实验3两种方法位置估计精度对比

    Figure  9.  The comparison of the location accuracy in Exp. 3

    表  1  实验1中目标运动状态

    Table  1.   The state of the targets in Exp.1

    目标初始状态[m, m/s, m, m/s, rad/s, —]出现帧消失帧
    1[50, 20, 750, 0, 0, I]536
    2[1250, 45, 1500, 25, 0, I]1228
    3[50, 75, 400, –40, 0, I]1230
    4[50, 60, 1900, –0.5, 0, I]1531
    5[50, 100, 1250, 0, 0, I]1633
    6[500, 90, 1000, 0.2, 0, I]1730
    下载: 导出CSV

    表  2  实验2中目标运动状态

    Table  2.   The state of the targets in Exp.2

    目标初始状态[m, m/s, m, m/s, rad/s, —]出现帧消失帧
    1[50, 55, 750, 0, ${\text{π}}$/720, I]536
    2[150, –75, 1250, –80, –${\text{π}}$/270, I]1228
    3[1600, –75, 400, 25, –${\text{π}}$/180, I]1230
    4[150, 0, 1000, –60, 0, I]1531
    5[500, 50, 1250, –50, ${\text{π}}$/360, I]1633
    6[500, –0.6, 600, 50, ${\text{π}}$/180, I]1730
    下载: 导出CSV

    表  3  实验3中目标运动状态

    Table  3.   The state of the targets in Exp.3

    目标初始状态[m, m/s, m, m/s, —]出现帧消失帧
    1[2500, 8, 1050, 8, I]536
    2[4000, –7, 4000, –7, I]1230
    3[2500, –5, 2250, –5, I]1633
    4[1200, 10, 2000, 10, I]1228
    下载: 导出CSV

    表  4  实验1算法蒙特卡洛实验平均运行时间(s)

    Table  4.   The mean running time of per Monte Carlo experiment in Exp. 1 (s)

    算法单个目标粒子数9 dB8 dB6 dB
    PF-PHD-TBD50014.777118.478816.1523
    30017.928116.998719.4703
    APP-PF-PHD-TBD50029.586629.944527.9817
    30026.795021.565422.0255
    下载: 导出CSV

    表  5  实验2算法蒙特卡洛实验平均运行时间(s)

    Table  5.   The mean running time of per Monte Carlo experiment in Exp. 2 (s)

    算法单个目标粒子数9 dB8 dB6 dB
    PF-PHD-TBD50011.594812.09709.1321
    3009.53997.67928.4194
    APP-PF-PHD-TBD50031.507432.721828.6130
    30030.553329.824926.3135
    下载: 导出CSV

    表  6  实验3算法蒙特卡洛实验平均运行时间(s)

    Table  6.   The mean running time of per Monte Carlo experiment in Exp. 3 (s)

    算法运行时间
    PF-PHD-TBD25.3594
    APP-PF-PHD-TBD40.1553
    下载: 导出CSV
  • [1] 陈小龙, 关键, 黄勇, 等. 雷达低可观测动目标精细化处理及应用[J]. 科技导报, 2017, 35(20): 19–27. doi: 10.3981/j.issn.1000-7857.2017.20.002

    CHEN Xiao-long, GUAN Jian, HUANG Yong, et al. Radar refined processing and its applications for low-observable moving target[J]. Science &Technology Review, 2017, 35(20): 19–27. doi: 10.3981/j.issn.1000-7857.2017.20.002
    [2] 陈小龙, 关键, 何友, 等. 高分辨稀疏表示及其在雷达动目标检测中的应用[J]. 雷达学报, 2017, 6(3): 239–251. doi: 10.12000/JR16110

    CHEN Xiao-long, GUAN Jian, HE You, et al. High-resolution sparse representation and its applications in radar moving target detection[J]. Journal of Radars, 2017, 6(3): 239–251. doi: 10.12000/JR16110
    [3] ZWAGA J H, DRIESSEN H, and MEIJER W D. Track-before-detect for surveillance radar: A recursive filter-based approach[C]. Proceedings of SPIE 4728, Signal and Data Processing of Small Targets 2002, Orlando, USA, 2002: 103–115. DOI: 10.1117/12.478496.
    [4] 杨亚波, 夏永红, 匡华星, 等. 雷达微弱目标检测前跟踪技术研究综述[J]. 雷达与对抗, 2015, 35(2): 22–28.

    YANG Ya-bo, XIA Yong-hong, KUANG Hua-xing, et al. An overview on track-before-detect technique for radar weak targets[J]. Radar &ECM, 2015, 35(2): 22–28.
    [5] 战立晓, 汤子跃, 朱振波. 雷达微弱目标检测前跟踪算法综述[J]. 现代雷达, 2013, 35(4): 45–52, 57. doi: 10.3969/j.issn.1004-7859.2013.04.010

    ZHAN Li-xiao, TANG Zi-yue, and ZHU Zhen-bo. An overview on track-before-detect algorithms for radar weak targets[J]. Modern Radar, 2013, 35(4): 45–52, 57. doi: 10.3969/j.issn.1004-7859.2013.04.010
    [6] BOERS Y and DRIESSEN J N. Multitarget particle filter track before detect application[J]. IEE Proceedings-Radar, Sonar and Navigation, 2004, 151(6): 351–357. doi: 10.1049/ip-rsn:20040841
    [7] 吴孙勇, 薛秋条, 朱圣棋, 等. 杂波环境下基于粒子滤波的微弱扩展目标检测前跟踪算法[J]. 雷达学报, 2017, 6(3): 252–258. doi: 10.12000/JR16128

    WU Sun-yong, XUE Qiu-tiao, ZHU Sheng-qi, et al. Track-before-detect algorithm for weak extended target based on particle filter under clutter environment[J]. Journal of Radars, 2017, 6(3): 252–258. doi: 10.12000/JR16128
    [8] 李洋漾, 李雯, 易伟, 等. 基于DP-TBD的分布式异步迭代滤波融合算法研究[J]. 雷达学报, 2018, 7(2): 254–262. doi: 10.12000/JR17057

    LI Yang-yang, LI Wen, YI Wei, et al. A distributed asynchronous recursive filtering fusion algorithm via DP-TBD[J]. Journal of Radars, 2018, 7(2): 254–262. doi: 10.12000/JR17057
    [9] MAHLER R P S M. Multitarget bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152–1178. doi: 10.1109/TAES.2003.1261119
    [10] VO B N and MA W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091–4104. doi: 10.1109/TSP.2006.881190
    [11] VO B N and MA W K. A closed-form solution for the probability hypothesis density filter[C]. Proceedings of the 2005 7th International Conference on Information Fusion, Philadelphia, USA, 2005: 856–863. DOI: 10.1109/ICIF.2005.1591948.
    [12] 吴伟, 尹成友. 一种用于多目标跟踪的增强型SMC-PHD滤波算法[J]. 雷达学报, 2012, 1(4): 406–413. doi: 10.3724/SP.J.1300.2012.20094

    WU Wei and YIN Cheng-you. An improved SMC-PHD filter for multiple targets tracking[J]. Journal of Radars, 2012, 1(4): 406–413. doi: 10.3724/SP.J.1300.2012.20094
    [13] PUNITHAKUMAR K, KIRUBARAJAN T, and SINHA A. A sequential monte carlo probability hypothesis density algorithm for multitarget track-before-detect[C]. Proceedings of SPIE 5913, Signal and Data Processing of Small Targets 2005, San Diego, USA, 2005: 1–8. DOI: 10.1117/12.618438.
    [14] Vo B N, Vo B T, Pham N T, et al. Reply to " Comments on ‘Joint detection and estimation of multiple objects from image observations’”[J]. IEEE Transactions on Signal Processing, 2012, 60(3): 1540–1541. doi: 10.1109/TSP.2011.2173686
    [15] 占荣辉, 刘盛启, 欧建平, 等. 基于序贯蒙特卡罗概率假设密度滤波的多目标检测前跟踪改进算法[J]. 电子与信息学报, 2014, 36(11): 2593–2599. doi: 10.3724/SP.J.1146.2013.02029

    ZHAN Rong-hui, LIU Sheng-qi, OU Jian-ping, et al. Improved multitarget track before detect algorithm using the sequential Monte Carlo probability hypothesis density filter[J]. Journal of Electronics &Information Technology, 2014, 36(11): 2593–2599. doi: 10.3724/SP.J.1146.2013.02029
    [16] DAUM FRED and HUANG J. Curse of dimensionality and particle filters[C]. Proceedings of 2003 IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 2003: 1979–1993. DOI: 10.1109/AERO.2003.1235126.
    [17] 林再平, 周一宇, 安玮. 改进的概率假设密度滤波多目标检测前跟踪算法[J]. 红外与毫米波学报, 2012, 31(5): 475–480. doi: 10.3724/SP.J.1010.2012.00475

    LIN Zai-ping, ZHOU Yi-yu, and AN WEI. Improved multitarget track-before-detect using probability hypothesis density filter[J]. Journal of Infrared and Millimeter Waves, 2012, 31(5): 475–480. doi: 10.3724/SP.J.1010.2012.00475
    [18] DENG X, PI Y, MORELANDE M, et al. Track-before-detect procedures for low pulse repetition frequency surveillance radars[J]. IET Radar, Sonar & Navigation, 2011, 5(1): 65–73. doi: 10.1049/iet-rsn.2009.0245
    [19] 童慧思, 张颢, 孟华平, 等. PHD滤波器在多目标检测前跟踪中的应用[J]. 电子学报, 2011, 39(9): 2046–2051.

    TONG Hui-si, ZHANG Hao, MENG Hua-ping, et al. Probability hypothesis density filter multitarget track-before-detect application[J]. Acta Electronica Sinica, 2011, 39(9): 2046–2051.
    [20] Geelen B D B. Accurate solution for the modified bessel function of the first kind[J]. Advances in Engineering Software, 1995, 23(2): 105–109. doi: 10.1016/0965-9978(95)00069-9
    [21] YI W, MORELANDE M R, KONG L J, et al. A computationally efficient particle filter for multitarget tracking using an independence approximation[J]. IEEE Transactions on Signal Processing, 2013, 61(4): 843–856. doi: 10.1109/TSP.2012.2229999
    [22] KREUCHER C, KASTELLA K, and HERO III A O. Multitarget tracking using the joint multitarget probability density[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1396–1414. doi: 10.1109/TAES.2005.1561892
    [23] GARCÍA-FERNÁNDEZ Á F, GRAJAL J, and MORELANDE M R. Two-layer particle filter for multiple target detection and tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 1569–1588. doi: 10.1109/TAES.2013.6558005
    [24] ÚBEDA-MEDINA, GARCÍA-FERNÁNDEZ Á F, and GRAJAL J. Adaptive auxiliary particle filter for track-before-detect with multiple targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5): 2317–2330. doi: 10.1109/TAES.2017.2691958
    [25] PITT M K and SHEPHARD N. Filtering via simulation: Auxiliary particle filters[J]. Journal of the American Statistical Association, 1999, 94(446): 590–599. doi: 10.1080/01621459.1999.10474153
    [26] GARCÍA FERNÁNDEZ Á F. Detection and tracking of multiple targets using wireless sensor networks[D]. [Ph. D. dissertation], Universidad Politécnica de Madrid, 2011: 61–78.
    [27] SCHUHMACHER D, VO B T, and VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447–3457. doi: 10.1109/tsp.2008.920469
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  2715
  • HTML全文浏览量:  912
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-23
  • 修回日期:  2018-11-05
  • 网络出版日期:  2019-06-01

目录

    /

    返回文章
    返回