一种基于Dropout约束深度极限学习机的雷达目标分类算法

赵飞翔 刘永祥 霍凯

赵飞翔, 刘永祥, 霍凯. 一种基于Dropout约束深度极限学习机的雷达目标分类算法[J]. 雷达学报, 2018, 7(5): 613-621. doi: 10.12000/JR18048
引用本文: 赵飞翔, 刘永祥, 霍凯. 一种基于Dropout约束深度极限学习机的雷达目标分类算法[J]. 雷达学报, 2018, 7(5): 613-621. doi: 10.12000/JR18048
Zhao Feixiang, Liu Yongxiang, Huo Kai. A Radar Target Classification Algorithm Based on Dropout Constrained Deep Extreme Learning Machine[J]. Journal of Radars, 2018, 7(5): 613-621. doi: 10.12000/JR18048
Citation: Zhao Feixiang, Liu Yongxiang, Huo Kai. A Radar Target Classification Algorithm Based on Dropout Constrained Deep Extreme Learning Machine[J]. Journal of Radars, 2018, 7(5): 613-621. doi: 10.12000/JR18048

一种基于Dropout约束深度极限学习机的雷达目标分类算法

DOI: 10.12000/JR18048
基金项目: 国家自然科学基金(61422114,61501481),湖南省杰出青年科学基金(2015JJ1003)
详细信息
    作者简介:

    赵飞翔(1989–),男,河南洛阳人,国防科技大学电子科学学院在读博士生,研究方向为雷达目标识别。E-mail: zfxkj123@sina.cn

    刘永祥(1976–),男,河北唐山人,博士,国防科技大学电子科学学院智能感知系主任,教授,博士生导师,主要研究方向为目标微动特性分析与识别。E-mail: lyx_bible@sina.com

    霍凯:霍  凯(1983–),男,湖北黄冈人,博士,国防科技大学电子科学学院讲师,主要研究方向为雷达信号处理与目标识别。E-mail: huokai2001@163.com

    通讯作者:

    刘永祥  lyx_bible@sina.com

A Radar Target Classification Algorithm Based on Dropout Constrained Deep Extreme Learning Machine

Funds: The National Natural Science Foundation of China (61422114, 61501481), The Natural Science Fund for Distinguished Young Scholars of Hunan Province (2015JJ1003)
  • 摘要: 雷达目标分类在军事和民用领域发挥着重要作用。极限学习机(Extreme Learning Machine, ELM)因其学习速度快、泛化能力强而被广泛应用于分类任务中。然而,由于其浅层结构,ELM无法有效地捕获数据深层抽象信息。虽然许多研究者已经提出了深度极限学习机,它可以用于自动学习目标高级特征表示,但是当训练样本有限时,模型容易陷入过拟合。为解决此问题,该文提出一种基于Dropout约束的深度极限学习机雷达目标分类算法,在雷达测量数据上的实验结果表明所提算法在分类准确率上达到93.37%,相较栈式自动编码器算法和传统深度极限学习机算法分别提高了5.25%和8.16%,验证了算法有效性。

     

  • 图  1  ELM-AE框架

    Figure  1.  The framework of ELM-AE

    图  2  DELM训练过程

    Figure  2.  The training process of DELM

    图  3  Dropout神经网络模型

    Figure  3.  Dropout neural network model

    图  4  每一个飞机目标HRRP序列

    Figure  4.  The HRRP sequence for each aircraft target

    图  5  每一个飞机目标距离像

    Figure  5.  Range profiles of each aircraft target

    图  6  第1和第2隐藏层不同节点数对分类效果的影响

    Figure  6.  The effect of different number of nodes in the first and second hidden layers on the classification performance

    图  7  不同隐层节点对网络训练和测试时间的影响

    Figure  7.  The effect of different hidden nodes on training and test time of network

    图  8  不同岭参数 $C = [{C_1},{C_2},{C_3}]$ 对网络分类效果的影响

    Figure  8.  The effect of different ridge parameters $C = [{C_1},{C_2},{C_3}]$ on classification performance

    图  9  不同Dropout参数对分类效果的影响

    Figure  9.  The effect of Dropout parameters on the classification performance

    表  1  所提方法和其他算法分类准确率比较

    Table  1.   Comparison of classification accuracy between the proposed method and other algorithms

    方法 分类准确率(%) 训练时间(s)
    SAE 88.12 7.8746
    DELM 85.21 0.4121
    所提方法 93.37 0.4205
    下载: 导出CSV
  • [1] Liu Y X, Zhu D K, Li X, et al. Micromotion characteristic acquisition based on wideband radar phase[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3650–3657. DOI: 10.1109/TGRS.2013.2274478
    [2] Bigdeli B and Pahlavani P. Quad-polarized synthetic aperture radar and multispectral data classification using classification and regression tree and support vector machine-based data fusion system[J]. Journal of Applied Remote Sensing, 2017, 11(1): 016007. DOI: 10.1117/1.JRS.11.016007
    [3] Shi J F, Li L L, Liu F, et al. Unsupervised polarimetric synthetic aperture radar image classification based on sketch map and adaptive Markov random field[J]. Journal of Applied Remote Sensing, 2016, 10(2): 025008. DOI: 10.1117/1.JRS.10.025008
    [4] Hinton G E and Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504–507. DOI: 10.1126/science.1127647
    [5] Lecun Y, Bengio Y, and Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. DOI: 10.1038/nature14539
    [6] Zhao F X, Liu Y X, Huo K, et al. Radar HRRP target recognition based on stacked autoencoder and extreme learning machine[J]. Sensors, 2018, 18(1): 173. DOI: 10.3390/s18010173
    [7] Abdel-Hamid O, Mohamed A R, Jiang H, et al. Convolutional neural networks for speech recognition[J]. IEEE/ACM Transactions on Audio,Speech,and Language Processing, 2014, 22(10): 1533–1545. DOI: 10.1109/TASLP.2014.2339736
    [8] Ding J, Chen B, Liu H W, et al. Convolutional neural network with data augmentation for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 364–368. DOI: 10.1109/LGRS.2015.2513754
    [9] Wang X L, Guo R, and Kambhamettu C. Deeply-learned feature for age estimation[C]. Proceedings of 2015 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2015: 534–541. DOI: 10.1109/WACV.2015.77.
    [10] Huang G B, Zhu Q Y, and Siew C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/3): 489–501. DOI: 10.1016/j.neucom.2005.12.126
    [11] Huang G, Huang G B, Song S J, et al. Trends in extreme learning machines: A review[J]. Neural Networks, 2015, 61: 32–48. DOI: 10.1016/j.neunet.2014.10.001
    [12] Liang N Y, Huang G B, Saratchandran P, et al. A fast and accurate online sequential learning algorithm for feedforward networks[J]. IEEE Transactions on Neural Networks, 2006, 17(6): 1411–1423. DOI: 10.1109/TNN.2006.880583
    [13] Zong W W and Huang G B. Face recognition based on extreme learning machine[J]. Neurocomputing, 2011, 74(16): 2541–2551. DOI: 10.1016/j.neucom.2010.12.041
    [14] Liu N and Wang H. Evolutionary extreme learning machine and its application to image analysis[J]. Journal of Signal Processing Systems, 2013, 73(1): 73–81. DOI: 10.1007/s11265-013-0730-x
    [15] Ding S F, Zhang N, Zhang J, et al. Unsupervised extreme learning machine with representational features[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(2): 587–595. DOI: 10.1007/s13042-015-0351-8
    [16] Zhao F X, Liu Y X, Huo K, et al. Radar target classification using an evolutionary extreme learning machine based on improved quantum-behaved particle swarm optimization[J]. Mathematical Problems in Engineering, 2017: 7273061. DOI: 10.1155/2017/7273061
    [17] Kasun L L C, Zhou H M, Huang G B, et al. Representational learning with ELMs for big data[J]. IEEE Intelligent Systems, 2013, 28(6): 31–34.
    [18] Yu W C, Zhuang F Z, He Q, et al. Learning deep representations via extreme learning machines[J]. Neurocomputing, 2015, 149: 308–315. DOI: 10.1016/j.neucom.2014.03.077
    [19] Zhu W T, Miao J, Qing L Y, et al.. Hierarchical extreme learning machine for unsupervised representation learning[C]. Proceedings of 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 2015: 1–8. DOI: 10.1109/IJCNN.2015.7280669.
    [20] Tang J X, Deng C W, and Huang G B. Extreme learning machine for multilayer perceptron[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(4): 809–821. DOI: 10.1109/TNNLS.2015.2424995
    [21] Hinton G E, Srivastava N, Krizhevsky A, et al.. Improving neural networks by preventing co-adaptation of feature detectors[OL]. https://arxiv.org/abs/1207.0580.2012.07.
    [22] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929–1958.
    [23] Iosifidis A, Tefas A, and Pitas I. DropELM: Fast neural network regularization with dropout and dropconnect[J]. Neurocomputing, 2015, 162: 57–66. DOI: 10.1016/j.neucom.2015.04.006
    [24] Baldi P and Sadowski P. The dropout learning algorithm[J]. Artificial Intelligence, 2014, 201: 78–122.
    [25] Wager S, Wang S D, and Liang P. Dropout training as adaptive regularization[C]. Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, Nevada, 2013: 351–359.
    [26] Yang W X, Jin L W, Tao D C, et al. DropSample: A new training method to enhance deep convolutional neural networks for large-scale unconstrained handwritten Chinese character recognition[J]. Pattern Recognition, 2016, 58: 190–203. DOI: 10.1016/j.patcog.2016.04.007
    [27] Baldi P and Sadowski P. Understanding dropout[C]. Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, Nevada, 2013: 2814–2822.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  3349
  • HTML全文浏览量:  1081
  • PDF下载量:  381
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-22
  • 修回日期:  2018-08-29
  • 网络出版日期:  2018-10-28

目录

    /

    返回文章
    返回