频控阵雷达技术及其应用研究进展

王文钦 陈慧 郑植 张顺生

王文钦, 陈慧, 郑植, 张顺生. 频控阵雷达技术及其应用研究进展[J]. 雷达学报, 2018, 7(2): 153-166. doi: 10.12000/JR18029
引用本文: 王文钦, 陈慧, 郑植, 张顺生. 频控阵雷达技术及其应用研究进展[J]. 雷达学报, 2018, 7(2): 153-166. doi: 10.12000/JR18029
Wang Wenqin, Chen Hui, Zheng Zhi, Zhang Shunsheng. Advances on Frequency Diverse Array Radar and Its Applications[J]. Journal of Radars, 2018, 7(2): 153-166. doi: 10.12000/JR18029
Citation: Wang Wenqin, Chen Hui, Zheng Zhi, Zhang Shunsheng. Advances on Frequency Diverse Array Radar and Its Applications[J]. Journal of Radars, 2018, 7(2): 153-166. doi: 10.12000/JR18029

频控阵雷达技术及其应用研究进展

DOI: 10.12000/JR18029
基金项目: 国家自然科学基金(61501781)
详细信息
    作者简介:

    王文钦,男,教授,博士生导师,主要研究方向为阵列处理及其在雷达、通信和电子对抗中的应用研究。E-mail: wqwang@uestc.edu.cn

    陈 慧,女,副教授,硕士生导师,主要研究方向为阵列信号处理

    郑 植,男,副研究员,硕士生导师,主要研究方向为阵列信号处理

    张顺生,男,副研究员,硕士生导师,主要研究方向为雷达信号处理

    通讯作者:

    王文钦 wqwang@uestc.edu.cn

Advances on Frequency Diverse Array Radar and Its Applications

Funds: The National Natural Science Foundation of China (61501781)
  • 摘要: 与传统的相控阵只形成方位角依赖性的发射波束不同,频控阵通过在阵元间采用一个小频差来实现波束的自动扫描功能。频控阵能够形成具有距离依赖性和时变性的发射波束,克服了传统相控阵阵列因子不包含距离和时间变量的缺点,因而带来很多独特的应用优势。该文在作者的“频控阵雷达:概念、原理与应用”(《电子与信息学报》,2016, 38(4): 1000–1011)基础上,简要介绍频控阵雷达的基本原理,全面梳理近3年来国内外关于频控阵雷达技术及其应用方面的最新研究进展,讨论几种新的频控阵雷达技术应用前景,主要包括雷达对抗和雷达-通信一体化应用,并指出目前亟待研究解决的波束时变性、有效接收机设计、自适应信号检测与估计和原理样机研制等几个关键问题。

     

  • 图  1  频控阵的发射波束方向图

    Figure  1.  Transmit beampattern of FDA antenna

    图  2  频控阵发射波束的脉内与脉间时变性对比

    Figure  2.  Time-variance of FDA transmit beampattern in pulse duration and pulse repetition interval

    图  3  不同非线性频偏时的频控阵发射方向图对比

    Figure  3.  Comparisons of transmit beampattern under different nonlinearly increasing frequency offsets

    图  4  Antonik等人研制的单频频控阵雷达发射和接收模块[3]

    Figure  4.  Antonik et al. designed monochromatic FDA radar modules[3]

    图  5  英国Huang设计的频控阵雷达发射阵列模块[25]

    Figure  5.  Huang in UK designed FDA transmitting array module[25]

    图  6  土耳其中东理工大学研制的频控阵雷达原型机模块[79,80]

    Figure  6.  Turkey Middle East Technical University designed FDA radar demos[79,80]

    图  7  美国国防研究报告网站公开的基于频控阵的物理层安全通信试验平台

    Figure  7.  U.S. defense research report discloses a physical-layer safety communication test platform based on FDA

    图  8  笔者研究团队研制的频控阵雷达信号源、天线,以及仿真与处理系统

    Figure  8.  FDA radar frequency synthesizer, antenna and software designed by the author’s research group

    图  9  不同阵元数下相控阵与频控阵干扰多普勒域效果对比图

    Figure  9.  Comparisons of phased-array jamming and FDA jamming methods in Doppler domain

    图  10  基于频控阵的雷达-通信一体化频偏设置方案示意图

    Figure  10.  Illustration of frequency offsets for FDA-based radar-communications

    图  11  基于频控阵的雷达-通信一体化原理框图

    Figure  11.  Illustration of FDA-based radar-communication scheme

    图  12  频控阵雷达与相控阵雷达发射信号的回波平均功率对比

    Figure  12.  Comparisons of the average of returned signals between phased-array and FDA radars

  • [1] Antonik P, Wicks W C, Griffiths H D, et al.. Frequency diverse array radars[C]. Proceedings of 2006 IEEE Conference on Radar, Verona, NY, 2006: 215–217.
    [2] Wicks M C and Antonik P. Frequency diverse array with independent modulation of frequency, amplitude, and phase[Z]. US, 7, 319, 427, 2008.
    [3] Antonik P. An investigation of a frequency diverse array[D]. [Ph.D. dissertation], University College London, 2009.
    [4] 王文钦, 邵怀宗, 陈慧. 频控阵雷达: 概念、原理与应用[J]. 电子与信息学报, 2016, 38(4): 1000–1011. DOI: 10.11999/JEIT151235

    Wang Wenqin, Shao Huaizong, and Chen Hui. Frequency diverse array radar: Concept, principle and application[J]. Journal of Electronics&Information Technology, 2016, 38(4): 1000–1011. DOI: 10.11999/JEIT151235
    [5] 霍凯, 赵晶晶. OFDM新体制雷达研究现状与发展趋势[J]. 电子与信息学报, 2015, 37(11): 2776–2789. DOI: 10.11999/JEIT150335

    Huo Kai and Zhao Jingjing. The development and prospect of the new OFDM radar[J]. Journal of Electronics&Information Technology, 2015, 37(11): 2776–2789. DOI: 10.11999/JEIT150335
    [6] Wang W Q. MIMO SAR imaging: Potential and challenges[J]. IEEE Aerospace and Electronic Systems Magazine, 2013, 27(8): 18–23. DOI: 10.1109/MAES.2013.6575407
    [7] 叶恺, 禹卫东, 王伟. 一种基于短偏移正交波形的MIMO SAR处理方案研究[J]. 雷达学报, 2017, 6(4): 376–387. DOI: 10.12000/JR17048

    Ye Kai, Yu Weidong, and Wang Wei. Investigation on processing scheme for MIMO SAR with STSO chirp waveforms[J]. Journal of Radars, 2017, 6(4): 376–387. DOI: 10.12000/JR17048
    [8] 苏海, 张晓娟, 叶盛波, 等. 一种基于射频开关切换的伪随机编码超宽带多发多收雷达设计[J]. 雷达学报, 2017, 6(1): 43–54. DOI: 10.12000/JR16076

    Su Hai, Zhang Xiaojuan, Ye Shengbo, et al. Design of an ultra-wideband pseudo random coded MIMO radar based on radio frequency switches[J]. Journal of Radars, 2017, 6(1): 43–54. DOI: 10.12000/JR16076
    [9] 郭艺夺, 宫健, 黄大荣, 等. 机载MIMO雷达收发联合降维STAP算法统一理论框架[J]. 雷达学报, 2016, 5(5): 517–525. DOI: 10.12000/JR16108

    Guo Yiduo, Gong Jian, Huang Darong, et al. Unified theoretical frame of a joint transmitter-receiver reduced dimensional STAP method for an airborne MIMO radar[J]. Journal of Radars, 2016, 5(5): 517–525. DOI: 10.12000/JR16108
    [10] 王珽, 赵拥军, 胡涛. 机载MIMO雷达空时自适应处理技术研究进展[J]. 雷达学报, 2015, 4(2): 136–148. DOI: 10.12000/JR14091

    Wang Ting, Zhao Yong-jun, and Hu Tao. Overview of space-time adaptive processing for airborne MIMO radar[J]. Journal of Radars, 2015, 4(2): 136–148. DOI: 10.12000/JR14091
    [11] So H C, Amin M G, Blunt S, et al. Introduction to the special issue on time/frequency modulated array signal processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 225–227. DOI: 10.1109/JSTSP.2017.2652098
    [12] Brady S. Frequency diverse array radar: Signal characterization and measurement accuracy[D]. [Master dissertation], Air Force Institute of Technology, 2010.
    [13] Sammartino P F, Baker C J, and Griffiths H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 201–222. DOI: 10.1109/TAES.2013.6404099
    [14] Wang W Q. Frequency diverse array antenna: New opportunities[J]. IEEE Antennas and Propagation Magazine, 2015, 57(2): 145–152. DOI: 10.1109/MAP.2015.2414692
    [15] Antonik P, Wicks M C, Griffiths H D, et al.. Range-dependent beamforming using element level waveform diversity[C]. Proceedings of International Waveform Diversity & Design Conference, Las Vegas, 2006: 1–4.
    [16] Higgins T and Blunt S. Analysis of range-angle coupled beamforming with frequency-diverse chirps[C]. Proceedings of International Waveform Diversity and Design Conference, Orlando, FL, 2009: 140–144.
    [17] Wang W Q. Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(8): 4073–4081. DOI: 10.1109/TAP.2013.2260515
    [18] Xu Y H, Shi X W, Xu J W, et al. Range-angle-dependent beamforming of pulsed frequency diverse array[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 3262–3267. DOI: 10.1109/TAP.2015.2423698
    [19] Wang W Q and So H C. Transmit subaperturing for range and angle estimation in frequency diverse array radar[J]. IEEE Transactions on Signal Processing, 2014, 62(8): 2000–2011. DOI: 10.1109/TSP.2014.2305638
    [20] Xu J W, Zhu S Q, and Liao G S. Range ambiguous clutter suppression for airborne FDA-STAP radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1620–1631. DOI: 10.1109/JSTSP.2015.2465353
    [21] Aytun A. Frequency diverse array radar[D]. [Master dissertation], Naval Postgraduate School, 2010.
    [22] Brady S. Frequency diverse array radar: Signal Characterization and measurement accuracy[D]. [Master dissertation], Air Force Institute of Technology, 2010.
    [23] Eker T. A conceptual evaluation of frequency diverse arrays and novel utilization of LFMCW[D]. [Ph.D. dissertation], Middle East Technical University, 2011.
    [24] Higgins T. Waveform diversity and range-coupled adaptive radar signal processing[D]. [Ph.D. dissertation], University of Kansas, 2011.
    [25] Huang J. Frequency diversity array: Theory and design[D]. [Ph.D. dissertation], University College London, 2010.
    [26] Farooq J. Frequency diversity for improving synthetic aperture radar imaging[D]. [Master dissertation], Air University Air Force Institute of Technology, 2009.
    [27] Wang W Q. Overview of frequency diverse array in radar and navigation applications[J]. IET Radar,Sonar&Navigation, 2016, 10(6): 1001–1012.
    [28] Cetintepe C. Analysis of frequency diverse arrays for radar and communication applications[D]. [Ph.D. dissertation], Middle East Technical University, 2015.
    [29] 许京伟. 频率分集阵列雷达运动目标检测方法研究[D]. [博士论文], 西安电子科技大学, 2015.

    Xu Jing-wei. Study on moving target detection with frequency diverse array radar[D]. [Ph.D. dissertation], Xidian University, 2015.
    [30] 高宽栋. 频控阵雷达阵列优化设计及其目标参数估计方法研究[D]. [博士论文], 电子科技大学, 2016.

    Gao Kuan-dong. Research of optimal array design and parameter estimation on frequency diverse array[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2016.
    [31] Jones A M. Frequency diverse array receiver architectures[D]. [Master dissertation], Wright State University, 2011.
    [32] Khan W, Qureshi I M, Basit A, et al. Range-bins-based MIMO frequency diverse array radar with logarithmic frequency offset[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 885–888. DOI: 10.1109/LAWP.2015.2478964
    [33] Gao K D, Wang W Q, Cai J Y, et al. Decoupled frequency diverse array range-angle-dependent beampattern synthesis using non-linearly increasing frequency offsets[J]. IET Microwaves,Antennas&Propagation, 2016, 10(8): 880–884. DOI: 10.1049/iet-map.2015.0658
    [34] Liu Y M, Ruan H, Wang L, et al. The random frequency diverse array: A new antenna structure for uncoupled direction-range indication in active sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 295–308. DOI: 10.1109/JSTSP.2016.2627183
    [35] Wang W Q, So H C, and Farina A. An overview on time/frequency modulated array processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 228–246. DOI: 10.1109/JSTSP.2016.2627182
    [36] Shao H Z, Dai J, Xiong J, et al. Dot-shaped range-angle beampattern synthesis for frequency diverse array[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1703–1706. DOI: 10.1109/LAWP.2016.2527818
    [37] Gao K D, Wang W Q, Chen H, et al. Transmit beamspace design for multi-carrier frequency diverse array sensor[J]. IEEE Sensors Journal, 2016, 16(14): 5709–5714. DOI: 10.1109/JSEN.2016.2573379
    [38] Xiong J, Wang W Q, Shao H Z, et al. Frequency diverse array transmit beampattern optimization with genetic algorithm[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 469–472. DOI: 10.1109/LAWP.2016.2584078
    [39] Khan W and Qureshi I M. Frequency diverse array radar with time-dependent frequency offset[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 758–761. DOI: 10.1109/LAWP.2014.2315215
    [40] Yao A M, Wu W, and Fang D G. Frequency diverse array antenna using time-modulated optimized frequency offset to obtain time-invariant spatial fine focusing beampattern[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4434–4446. DOI: 10.1109/TAP.2016.2594075
    [41] Yao A M, Wu W, and Fang D G. Solutions of time-invariant spatial focusing for multi-targets using time modulated frequency diverse antenna arrays[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 552–566. DOI: 10.1109/TAP.2016.2633902
    [42] Yao A M, Rocca P, Wu W, et al. Synthesis of time-modulated frequency diverse arrays for short-range multi-focusing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 282–294. DOI: 10.1109/JSTSP.2016.2615267
    [43] Cheng Q, Zhu J, Xie T, et al. Time-invariant angle-range dependent directional modulation based on time-modulated frequency diverse arrays[J]. IEEE Access, 2017, 5: 26279–26290. DOI: 10.1109/ACCESS.2017.2772246
    [44] Yang Y Q, Wang H, Wang H Q, et al. Optimization of sparse frequency diverse array with time-invariant spatial-focusing beampattern[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(2): 351–354. DOI: 10.1109/LAWP.2018.2789979
    [45] Chen H, Shao H Z, and Wang W Q. Joint sparsity-based range-angle-dependent beampattern synthesis for frequency diverse array[J]. IEEE Access, 2017, 5: 15152–15161. DOI: 10.1109/ACCESS.2017.2731973
    [46] Chen B X, Chen X L, Huang Y, et al. Transmit beampattern synthesis for the FDA radar[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 98–101. DOI: 10.1109/LAWP.2017.2776957
    [47] Li Q, Huang L, Zhang P C, et al. Beampattern synthesis for frequency diverse array via reweighted iterative phase compensation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 467–475. DOI: 10.1109/TAES.2017.2735638
    [48] Fartookzadeh M and Armaki S H M. Synthesis of serial-fed frequency diverse arrays with periodic triangular frequency-modulated continuous waveform[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(2): 263–266. DOI: 10.1109/LAWP.2017.2785438
    [49] Wang Y X, Wang G C, and Li W. Transmit beampattern design in range and angle domains for MIMO frequency diverse array radar[J].IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1003–1006. DOI: 10.1109/LAWP.2016.2616193
    [50] Xu Y H, Shi X M, Li W T, et al. Flat-top beampattern synthesis in range and angle domains for frequency diverse array via second-order cone programming[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1479–1482. DOI: 10.1109/LAWP.2015.2513758
    [51] Sammartino P F, Baker C J, and Griffiths H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 201–222. DOI: 10.1109/TAES.2013.6404099
    [52] Wang W Q and Shao H Z. Range-angle localization of targets by a double-pulse frequency diverse array radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 8(1): 106–114. DOI: 10.1109/JSTSP.2013.2285528
    [53] Wang W Q. Subarray-based frequency diverse array radar for target range-angle estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 3057–3067. DOI: 10.1109/TAES.2014.120804
    [54] Wang W Q, Dai M M, and Zheng Z. FDA radar ambiguity function characteristics analysis and optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018. DOI: 10.1109/TAES.2017.2785598
    [55] Wang W Q and Zhu C L. Nested array receiver with time-delayers for joint target range and angle estimation[J]. IET Radar,Sonar&Navigation, 2016, 10(8): 1384–1393. DOI: 10.1049/iet-rsn.2015.0450
    [56] Li J J, Li H B, and Ouyang S. Identifying unambiguous frequency pattern for target localisation using frequency diverse array[J]. Electronics Letters, 2017, 53(19): 1331–1333. DOI: 10.1049/el.2017.2355
    [57] Qin S, Zhang Y D, Amin M G, et al. Frequency diverse coprime arrays with coprime frequency offsets for multitarget localization[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 321–335. DOI: 10.1109/JSTSP.2016.2627184
    [58] Xu J W, Liao G S, Zhu S Q, et al. Joint range and angle estimation using MIMO radar with frequency diverse array[J]. IEEE Transactions on Signal Processing, 2015, 63(13): 3396–3410. DOI: 10.1109/TSP.2015.2422680
    [59] Xu J W, Liao G S, Zhang Y H, et al. An adaptive range-angle-Doppler processing approach for FDA-MIMO radar using three-dimensional localization[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 309–320. DOI: 10.1109/JSTSP.2016.2615269
    [60] Gao K D, Wang W Q, and Cai J Y. Frequency diverse array and MIMO hybrid radar transmitter design via Cramér-Rao lower bound minimisation[J]. IET Radar,Sonar&Navigation, 2016, 10(9): 1660–1670. DOI: 10.1049/iet-rsn.2015.0644
    [61] Xiong J, Wang W Q, and Gao K D. FDA-MIMO radar range-angle estimation: CRLB, MSE, and resolution analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 284–294. DOI: 10.1109/TAES.2017.2756498
    [62] Cui C, Xu J, Gui R H, et al. Search-free DOD, DOA and range estimation for bistatic FDA-MIMO radar[J]. IEEE Access, 2018, 6: 15431–15445. DOI: 10.1109/ACCESS.2018.2816780
    [63] Li X X, Wang D W, Ma X Y, et al. FDS-MIMO radar low-altitude beam coverage performance analysis and optimization[J]. IEEE Transactions on Signal Processing, 2018, 66(9): 2494–2506. DOI: 10.1109/TSP.2018.2815011
    [64] Li X X, Wang D W, Wang W Q, et al. Range-angle localization of targets with planar frequency diverse subaperturing MIMO radar[J]. IEEE Access, 2018, 6: 12505–12517. DOI: 10.1109/ACCESS.2018.2810139
    [65] Gong P C, Wang W Q, Li F C, et al. Sparsity-aware transmit beamspace design for FDA-MIMO radar[J]. Signal Processing, 2018, 144: 99–103. DOI: 10.1016/j.sigpro.2017.10.008
    [66] Gui R H, Wang W Q, Cui C, et al. Coherent pulsed-FDA radar receiver design with time-variance consideration: SINR and CRB analysis[J]. IEEE Transactions on Signal Processing, 2018, 66(1): 200–214. DOI: 10.1109/TSP.2017.2764860
    [67] Xu J W, Liao G S, Zhu S Q, et al. Deceptive jamming suppression with frequency diverse MIMO radar[J]. Signal Processing, 2015, 113: 9–17. DOI: 10.1016/j.sigpro.2015.01.014
    [68] Xu J W, Zhu S Q, and Liao G S. Space-time-range adaptive processing for airborne radar systems[J]. IEEE Sensors Journal, 2015, 15(3): 1602–1610. DOI: 10.1109/JSEN.2014.2364594
    [69] Xu J W, Liao G S, and So H C. Space-time adaptive processing with vertical frequency diverse array for range-ambiguous clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5352–5364. DOI: 10.1109/TGRS.2016.2561308
    [70] Xu J W, Liao G S, Huang L, et al. Robust adaptive beamforming for fast-moving target detection with FDA-STAP radar[J]. IEEE Transactions on Signal Processing, 2017, 65(4): 973–984. DOI: 10.1109/TSP.2016.2628340
    [71] Lin C C, Huang P M, Wang W W, et al. Unambiguous signal reconstruction approach for SAR imaging using frequency diverse array[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1628–1632. DOI: 10.1109/LGRS.2017.2727512
    [72] Wang C H, Xu J W, Liao G S, et al. A range ambiguity resolution approach for high-resolution and wide-swath SAR imaging using frequency diverse array[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 336–346. DOI: 10.1109/JSTSP.2016.2605064
    [73] Basit A, Qureshi I M, Khan W, et al. Range-angle-dependent beamforming for cognitive antenna array radar with frequency diversity[J]. Cognitive Computation, 2016, 8(2): 204–216. DOI: 10.1007/s12559-015-9348-6
    [74] Basit A, Khan W, Khan S, et al. Development of frequency diverse array radar technology: A review[J]. IET Radar,Sonar&Navigation, 2018, 12(2): 165–175. DOI: 10.1049/iet-rsn.2017.0207
    [75] Wang W Q. Cognitive frequency diverse array radar with situational awareness[J]. IET Radar,Sonar&Navigation, 2016, 10(2): 359–369. DOI: 10.1049/iet-rsn.2015.0211
    [76] Wang W Q. Moving-target tracking by cognitive RF stealth radar using frequency diverse array antenna[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 3764–3773. DOI: 10.1109/TGRS.2016.2527057
    [77] Xiong J, Wang W Q, Cui C, et al. Cognitive FDA-MIMO radar for LPI transmit beamforming[J]. IET Radar,Sonar&Navigation, 2017, 11(10): 1574–1580. DOI: 10.1049/iet-rsn.2016.0551
    [78] Gui R H, Wang W Q, Pan Y, et al. Cognitive target tracking via angle-range-Doppler estimation with transmit subaperturing FDA radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 76–89. DOI: 10.1109/JSTSP.2018.2793761
    [79] Eker T, Demir S, and Hizal A. Exploitation of Linear Frequency Modulated Continuous Waveform (LFMCW) for Frequency Diverse Arrays[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(7): 3546–3553. DOI: 10.1109/TAP.2013.2258393
    [80] Cetintepe C and Demir S. Multipath characteristics of frequency diverse arrays over a ground plane[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(7): 3567–3574. DOI: 10.1109/TAP.2014.2316292
    [81] Sturm C and Wiesbeck W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. DOI: 10.1109/JPROC.2011.2131110
    [82] 刘志鹏. 雷达通信一体化波形研究[D]. [博士论文], 北京理工大学, 2015.

    Liu Zhi-peng. Waveform research on integration of radar and communication[D]. [Ph.D. dissertation], Beijing Institute of Technology, 2015.
    [83] Labib M, Marojevic V, Martone A F, et al. Coexistence between communications and radar systems: A survey[J]. URSI Radio Science Bulletin, 2017, 2017(362): 74–82.
    [84] Zheng L, Lops M, Wang X D, et al. Joint design of overlaid communication systems and pulsed radars[J]. IEEE Transactions on Signal Processing, 2018, 66(1): 139–154. DOI: 10.1109/TSP.2017.2755603
    [85] Shi C G, Wang F, Sellathurai M, et al. Power minimization-based robust OFDM radar waveform design for radar and communication systems in coexistence[J].IEEE Transactions on Signal Processing, 2018, 66(5): 1316–1330. DOI: 10.1109/TSP.2017.2770086
    [86] Li M J, Wang W Q, and Zheng Z. Communication-embedded OFDM chirp waveform for delay-Doppler radar[J]. IET Radar,Sonar&Navigation, 2018, 12(3): 353–360. DOI: 10.1049.iet-rsn.2017.0369
    [87] Li B and Petropulu A P. Joint transmit designs for coexistence of MIMO wireless communications and sparse sensing radars in clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2846–2864. DOI: 10.1109/TAES.2017.2717518
    [88] Chiriyath A R, Paul B, and Bliss D W. Radar-communications convergence: Coexistence, cooperation, and co-design[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(1): 1–12. DOI: 10.1109/TCCN.2017.2666266
    [89] Wang W Q. DM using FDA antenna for secure transmission[J]. IET Microwaves,Antennas&Propagation, 2017, 11(3): 336–345. DOI: 10.1049/iet-map.2016.0303
    [90] Wang W Q. Potential transmit beamforming schemes for active LPI radars[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32(5): 46–52. DOI: 10.1109/MAES.2017.150259
    [91] Ding Y, Zhang J, and Fusco V. Frequency diverse array OFDM transmitter for secure wireless communication[J]. Electronics Letters, 2015, 51(17): 1374–1376. DOI: 10.1049/el.2015.1491
    [92] Hu J S, Yan S H, Shu F, et al. Artificial-noise-aided secure transmission with directional modulation based on random frequency diverse arrays[J]. IEEE Access, 2017, 5: 1658–1667. DOI: 10.1109/ACCESS.2017.2653182
    [93] Nusenu S Y, Wang W Q, and Xiong J. Time-modulated FDA for physical-layer security[J]. IET Microwaves,Antennas&Propagation, 2017, 11(9): 1274–1279. DOI: 10.1049/iet-map.2016.0930
    [94] Lin J R, Li Q, Yang J T, et al. Physical-layer security for proximal legitimate user and eavesdropper: A frequency diverse array beamforming approach[J].IEEE Transactions on Information Forensics and Security, 2018, 13(3): 671–684. DOI: 10.1109/TIFS.2017.2765500
    [95] Wang Y B, Wang W Q, Chen H, et al. Optimal frequency diverse subarray design with Cramer-Rao lower bound minimization[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1188–1191. DOI: 10.1109/LAWP.2015.2396951
    [96] Basit A, Qureshi I M, Khan W, et al. Beam pattern synthesis for an FDA radar with Hamming window-based nonuniform frequency offset[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2283–2286. DOI: 10.1109/LAWP.2017.2714761
  • 加载中
图(12)
计量
  • 文章访问数:  6881
  • HTML全文浏览量:  2510
  • PDF下载量:  1151
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-03
  • 修回日期:  2018-04-23
  • 网络出版日期:  2018-04-28

目录

    /

    返回文章
    返回