Three-dimensional Geometry Reconstruction of Ship Targets with Complex Motion for Interferometric ISAR with Sparse Aperture

Wang Yong Chen Xuefei

王勇, 陈雪飞. 基于稀疏孔径干涉ISAR技术的复杂运动舰船目标三维坐标恢复方法[J]. 雷达学报, 2018, 7(3): 320-334. doi: 10.12000/JR18019
引用本文: 王勇, 陈雪飞. 基于稀疏孔径干涉ISAR技术的复杂运动舰船目标三维坐标恢复方法[J]. 雷达学报, 2018, 7(3): 320-334. doi: 10.12000/JR18019
Wang Yong, Chen Xuefei. Three-dimensional Geometry Reconstruction of Ship Targets with Complex Motion for Interferometric ISAR with Sparse Aperture[J]. Journal of Radars, 2018, 7(3): 320-334. doi: 10.12000/JR18019
Citation: Wang Yong, Chen Xuefei. Three-dimensional Geometry Reconstruction of Ship Targets with Complex Motion for Interferometric ISAR with Sparse Aperture[J]. Journal of Radars, 2018, 7(3): 320-334. doi: 10.12000/JR18019

Three-dimensional Geometry Reconstruction of Ship Targets with Complex Motion for Interferometric ISAR with Sparse Aperture

DOI: 10.12000/JR18019
Funds: The National Natural Science Foundation of China (61622107, 61471149), The Fundamental Research Funds for the Central Universities.
More Information
    Author Bio:

    Wang Yong (SM’16) was born in 1979. He received the B. S. degree and M. S. degree from Harbin Institute of Technology (HIT), Harbin, China, in 2002 and 2004, respectively, both in electronic engineering. He received the Ph. D. degree in information and communication engineering from HIT in 2008. He is currently a professor with the institute of electronic engineering technology in HIT. His main research interests are in the fields of time frequency analysis of nonstationary signal, radar signal processing, and their application in synthetic aperture radar (SAR) imaging. Dr. Yong Wang has published more than 60 papers, and most of them appeared in the journals of IEEE Trans. On GRS, IET Signal Processing, Signal Processing, etc. He received the Program for New Century Excellent Talents in University of Ministry of Education of China in 2012, and the Excellent Doctor’s Degree nomination Award in China in 2010. E-mail: wangyong6012@hit.edu.cn

    Chen Xuefei received the B. S. degree from Harbin Institute of Technology (HIT), Harbin, China, in 2017. She is now pursuing the M. E. degree in Harbin Institute of Technology. Her current research interests include the field of InISAR imaging, time-frequency signal analysis and ISAR imaging of the target with sparse aperture

    Corresponding author: Wang Yong   wangyong6012@hit.edu.cn
  • 摘要: 基于正交双基线的3维干涉逆合成孔径雷达(ISAR)成像技术可获得目标的3维坐标信息,这对目标的分类与识别是非常有利的。然而,实际情况下回波数据一般都是稀疏的,这对传统的干涉成像技术带来一定的挑战。该文提出一种稀疏孔径情况下的舰船目标3维干涉成像算法,并采用最小熵方法实现回波数据的运动补偿与图像配准,同时基于梯度算子实现对稀疏数据的精确恢复。通过对方位向数据进行参数估计与压缩处理,可获得目标的2维ISAR成像结果,进而基于干涉技术实现对复杂运动舰船目标的3维成像。仿真数据验证了文中方法的有效性。

     

  • Figure  1.  3-D InISAR imaging model

    Figure  2.  The 3-D imaging model in XOY plane

    Figure  3.  RMS

    Figure  4.  GMS

    Figure  5.  The ideal model for the ship

    Figure  6.  RMS of the echoes from radar A with 2/4 sparse aperture

    Figure  7.  GMS of the echoes from radar A with 2/4 sparse aperture

    Figure  9.  2-D ISAR images of radar A in 2/4 sparse aperture (GMS)

    Figure  10.  3-D reconstruction for the ship in 2/4 sparse aperture data (RMS)

    Figure  11.  3-D reconstruction for the ship in 1/4 sparse aperture data (RMS)

    Figure  12.  3-D reconstruction for the ship in 2/4 sparse aperture data (GMS)

    Figure  13.  3-D reconstruction for the ship in 1/4 sparse aperture data (GMS)

    Figure  15.  The images of the target with 2/4 sparse aperture data (GMS) by using the OMP algorithm

    Figure  8.  2-D ISAR images of radar A in 2/4 sparse aperture (RMS)

    Figure  14.  The images of the target with 2/4 sparse aperture data (RMS) by using the OMP algorithm

    Figure  16.  Calculation and analysis of ${{\vec R}_{Ap}}\left( {{t_m}} \right)$

    Table  1.   Simulation parameters for the ship with complicated movement

    Parameter Value
    Carrier frequency 10 GHz
    Pulse width 20 us
    Imaging time 2 s
    Band width 400 MHz
    Amplitude of roll 2.3 ${{π}} $/180
    Amplitude of pitch 2.5 ${{π}} $/180
    Amplitude of yaw 4.8 ${{π}} $/180
    Length of the baseline 2 m
    Sampling frequency 25.6 MHz
    Number of the pulse 512
    Pulse repetition frequency 256 Hz
    Angular velocity of roll 2 ${{π}} $/12.2
    Angular velocity of pitch 2 ${{π}} $/6.7
    Angular velocity of yaw 2 ${{π}} $/14.2
    下载: 导出CSV
  • [1] Wang G Y, Xia X G, and Chen V C. Three-dimensional ISAR imaging of maneuvering targets using three receivers[J]. IEEE Transactions on Image Processing, 2001, 10(3): 436–447. DOI: 10.1109/83.908519
    [2] Ma C Z, Yeo T S, Zhang Q, et al. Three-dimensional ISAR imaging based on antenna array[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(2): 504–515. DOI: 10.1109/TGRS.2007.909946
    [3] Liu L, Zhou F, Bai X R, et al. Joint cross-range scaling and 3D geometry reconstruction of ISAR targets based on factorization method[J]. IEEE Transactions on Image Processing, 2016, 25(4): 1740–1750. DOI: 10.1109/TIP.2016.2526905
    [4] Wang Y and Li X L. Three-dimensional interferometric ISAR imaging for the ship target under the bi-static configuration[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(4): 1505–1520. DOI: 10.1109/JSTARS.2015.2513774
    [5] Cao X H, Su F L, Sun H D, et al.. Three-dimensional In-ISAR imaging via the emulated Bistatic radar[C]. Proceedings of the 2nd IEEE Conference on Industrial Electronics and Applications, Harbin, China, 2007: 2826–2830.
    [6] Ma C Z, Yeo T S, Tan H S, et al. Three-dimensional ISAR imaging using a two-dimensional sparse antenna array[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3): 378–382. DOI: 10.1109/LGRS.2008.916071
    [7] Ng B, Tran H T, and An P. Total rotational velocity estimation using 3D interferometrie ISAR with squint geometry[C]. Proceedings of 2016 IEEE Radar Conference, Philadelphia, PA, USA, 2016: 1–6.
    [8] Tran H T, Giusti E, Martorella M, et al.. Estimation of the total rotational velocity of a non-cooperative target using a 3D InISAR system[C]. Proceedings of 2015 IEEE Radar Conference, Arlington, VA, USA, 2015: 937–941.
    [9] Martorella M, Stagliano D, Salvetti F, et al. 3D interferometric ISAR imaging of noncooperative targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 3102–3114. DOI: 10.1109/TAES.2014.130210
    [10] Lv Q, Su T, Zheng J B, et al. Three-dimensional interferometric inverse synthetic aperture radar imaging of maneuvering target based on the joint cross modified Wigner-Ville distribution[J]. Journal of Applied Remote Sensing, 2016, 10(1): 1–17.
    [11] Zhang L, Qiao Z J, Xing M D, et al. High-resolution ISAR imaging by exploiting sparse apertures[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 997–1008. DOI: 10.1109/TAP.2011.2173130
    [12] Zhong Li-hua, Hu Dong-hui, Ding Chi-biao, et al. ISAR sparse aperture imaging algorithm for large size target[J]. Journal of Radars, 2012, 1(3): 292–300. DOI: 10.3724/SP.J.1300.2012.20033
    [13] Pang L N, Zhang S S, Liu C, et al.. CS-based high-resolution ISAR imaging with adaptive sparse basis[C]. Proceedings of 2014 IEEE International Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 2014: 362–365.
    [14] Bacci A, Staglianó D, Giusti E, et al.. 3D interferometric ISAR via compressive sensing[C]. Proceedings of 2014 11th European Radar Conference, Rome, Italy, 2014: 233–236.
    [15] Liu Y B, Li N, Wang R, et al. Achieving high-quality three-dimensional InISAR imageries of maneuvering target via super-resolution ISAR imaging by exploiting sparseness[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4): 828–832. DOI: 10.1109/LGRS.2013.2279402
    [16] Chen Q Q, Xu G, Zhang L, et al. Three-dimensional interferometric inverse synthetic aperture radar imaging with limited pulses by exploiting joint sparsity[J]. IET Radar,Sonar&Navigation, 2015, 9(6): 692–701.
    [17] Xu G, Xing M D, Xia X G, et al. 3D geometry and motion estimations of maneuvering targets for interferometric ISAR with sparse aperture[J]. IEEE Transactions on Image Processing, 2016, 25(5): 2005–2020. DOI: 10.1109/TIP.2016.2535362
    [18] Qiu W, Martorella M, Zhou J X, et al. Three-dimensional inverse synthetic aperture radar imaging based on compressive sensing[J]. IET Radar,Sonar&Navigation, 2014, 9(4): 411–420.
    [19] Zhu D Y, Wang L, Yu Y S, et al. Robust ISAR range alignment via minimizing the entropy of the average range profile[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 204–208. DOI: 10.1109/LGRS.2008.2010562
    [20] Zhu D Y, Li Y, Yu X, et al.. Compressed ISAR autofocusing: Experimental results[C]. Proceedings of 2012 IEEE Radar Conference, Atlanta, GA, USA, 2012: 425–430.
    [21] Wang J, Liu X, and Zhou Z. Minimum-entropy phase adjustment for ISAR[J]. IEE Proceedings-Radar,Sonar and Navigation, 2004, 151(4): 203–209. DOI: 10.1049/ip-rsn:20040692
    [22] Wu W Z, Hu P J, Xu S Y, et al. Image registration for InISAR based on joint translational motion compensation[J]. IET Radar,Sonar&Navigation, 2017, 11(10): 1597–1603.
    [23] Zhu F, Zhang Q, Yan J B, et al.. Compressed sensing in ISAR imaging with sparse sub-aperture[C]. Proceedings of 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011, 2: 1463–1466.
    [24] Stanković L and Daković M. On a gradient-based algorithm for sparse signal reconstruction in the signal/measurements domain[J]. Mathematical Problems in Engineering, 2016, 2016: 6212674.
    [25] Wang Y. Radar imaging of non-uniformly rotating targets via a novel approach for multi-component AM-FM signal parameter estimation[J]. Sensors, 2015, 15(3): 6905–6923. DOI: 10.3390/s150306905
    [26] Fornaro G, Franceschetti G, and Lanari R. Interferometric SAR phase unwrapping using Green’s formulation[J].IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(3): 720–727. DOI: 10.1109/36.499751
    [27] Li Fang-fang, Zhan Yi, Hu Dong-hui, et al. A fast method for InSAR phase unwrapping based on quality guide[J]. Journal of Radars, 2012, 1(2): 196–202. DOI: 10.3724/SP.J.1300.2012.20023
    [28] Li N, Wang L, and Zhu D Y. Optimal ISAR imaging time selection of ship targets using real data[C]. Proceedings of IET International Radar Conference 2013, Xi’an, China, 2013: 1–4.
    [29] Wang Y and Jiang Y C. ISAR imaging of a ship target using product high-order matched-phase transform[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 658–661. DOI: 10.1109/LGRS.2009.2013876
    [30] Wang Y and Jiang Y C. New approach for ISAR imaging of ship target with 3D rotation[J]. Multidimensional Systems and Signal Processing, 2010, 21(4): 301–318. DOI: 10.1007/s11045-010-0111-6
    [31] Li Y N, Fu Y W, Li X, et al.. An ISAR imaging method for multiple moving targets based on fractional Fourier transformation[C]. Proceedings of 2009 IEEE Radar Conference, Pasadena, CA, USA, 2009: 1–6.
    [32] Yamamoto K, Iwamoto M, and Kirimoto T. A new algorithm to calculate the reference image of ship targets for ATR using ISAR[C]. Proceedings of MTS/IEEE Conference and Exhibition OCEANS 2001, Honolulu, HI, USA, 2001, 4: 2601–2607.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  2223
  • HTML全文浏览量:  770
  • PDF下载量:  316
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-02
  • 修回日期:  2018-04-28
  • 网络出版日期:  2018-06-28

目录

    /

    返回文章
    返回