基于空间聚类种子生长算法的阵列干涉SAR点云滤波

王松 张福博 陈龙永 梁兴东

王松, 张福博, 陈龙永, 梁兴东. 基于空间聚类种子生长算法的阵列干涉SAR点云滤波[J]. 雷达学报, 2018, 7(3): 355-363. doi: 10.12000/JR18006
引用本文: 王松, 张福博, 陈龙永, 梁兴东. 基于空间聚类种子生长算法的阵列干涉SAR点云滤波[J]. 雷达学报, 2018, 7(3): 355-363. doi: 10.12000/JR18006
Wang Song, Zhang Fubo, Chen Longyong, Liang Xingdong. Array-interferometric Synthetic Aperture Radar Point Cloud Filtering Based on Spatial Clustering Seed Growth Algorithm[J]. Journal of Radars, 2018, 7(3): 355-363. doi: 10.12000/JR18006
Citation: Wang Song, Zhang Fubo, Chen Longyong, Liang Xingdong. Array-interferometric Synthetic Aperture Radar Point Cloud Filtering Based on Spatial Clustering Seed Growth Algorithm[J]. Journal of Radars, 2018, 7(3): 355-363. doi: 10.12000/JR18006

基于空间聚类种子生长算法的阵列干涉SAR点云滤波

DOI: 10.12000/JR18006
基金项目: 国家部委基金
详细信息
    作者简介:

    陈龙永(1979–),男,研究员,硕士生导师,现任中国科学院电子学研究所微波成像技术重点实验室常务副主任,主要从事高分辨率合成孔径雷达系统、干涉合成孔径雷达系统、微波成像新概念、新体制和新技术等领域的研究工作。E-mail: lychen@mail.ie.ac.cn

    通讯作者:

    梁兴东   xdliang@mail.ie.ac.cn

Array-interferometric Synthetic Aperture Radar Point Cloud Filtering Based on Spatial Clustering Seed Growth Algorithm

Funds: The National Ministries Foundation
  • 摘要: 阵列干涉合成孔径雷达(Synthetic Aperture Radar, SAR)通过在交轨向布置多个天线,结合方位向的合成孔径和斜距向的大带宽信号,具备了3维分辨能力,且多个阵元保证了其在高程向的空间采样,能够解决干涉SAR(Interferometric SAR, InSAR)测绘中的叠掩问题,实现观测场景的3维成像。但是获得场景区域的3维点云分布中存在较多杂点,高程向误差较大,所以传统的激光雷达(Light Detection And Ranging, LiDAR)点云滤波方法不适用于阵列干涉SAR点云的滤波处理。针对该问题,该文提出基于空间聚类种子生长算法的阵列干涉SAR点云滤波算法,应用密度和高程双重阈值生成密度-高程图像,通过图像处理手段去除小型杂点,利用空间聚类种子生长算法将植被等从点云数据中去除,完成点云滤波处理。利用国内首次机载阵列干涉SAR实验数据,通过与传统LiDAR滤波方法进行比较,验证了该文算法的有效性,为后续建筑物提取和精细化处理提供保障。

     

  • 图  1  原始3维点云

    Figure  1.  The original three-dimensional point cloud

    图  2  简单建筑物模型

    Figure  2.  Simple building model

    图  3  搜索中邻域的编码

    Figure  3.  The encoding of the neighborhood in the search

    图  4  种子生长流程图

    Figure  4.  Flowchart of seed growth

    图  5  点云处理前后示意图

    Figure  5.  Schematic diagram before and after cloud processing

    图  6  处理后局部放大图

    Figure  6.  Local enlarged image after processing

    图  7  图像处理前后的密度-高程图像

    Figure  7.  Density-elevation image before and after image processing

    图  8  图像处理前后的局部放大图

    Figure  8.  Local enlargement before and after image processing

    图  9  小面积区域去除前后的密度-高程图像

    Figure  9.  Density-elevation images before and after removal of small area

    图  10  滤波后结果与光学图像对照图

    Figure  10.  Comparison of filter results with optical image

    表  1  滤波算法质量评价表

    Table  1.   Filter algorithm quality evaluation table

    滤波算法 After filtering Tp Fp FN Completeness (100%) Correctness (100%) Quality (100%)
    本文算法 64858 63753 1105 2381 96.40 98.30 94.81
    形态学滤波 81443 64032 17441 2102 96.82 78.62 76.64
    坡度滤波 84039 64395 19944 1739 97.37 76.63 75.07
    下载: 导出CSV
  • [1] Cumming I G and Wong F H著. 洪文, 胡东辉, 译. 合成孔径雷达成像-算法与实现[M]. 北京: 电子工业出版社, 2007: 3–5.

    Cumming I G and Wong F H. Hong Wen and Hu Dong-hui, Trans. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Beijing: Publishing House of Electronics Industry, 2007: 3–5.
    [2] Dorninger P and Pfeifer N. A comprehensive automated 3D approach for building extraction, reconstruction, and regularization from airborne laser scanning point clouds[J]. Sensors, 2008, 8(11): 7323–7343. DOI: 10.3390/s8117323
    [3] Filin S. Surface clustering from airborne laser scanning data[J]. International Archives of Photogrammetry and Remote Sensing, 2002, 32(3A): 119–124.
    [4] Elaksher A F and Bethel J S. Reconstructing 3D buildings from Lidar data[C]. Proceedings of the ISPRS Commission III Symposium on Photogrammetric Computer Vision, Graz, Austria, 2002: 1–6.
    [5] Forlani G, Nardinocchi C, Scaioni M, et al. Complete classification of raw LIDAR data and 3D reconstruction of buildings[J]. Pattern Analysis and Applications, 2006, 8(4): 357–374. DOI: 10.1007/s10044-005-0018-2
    [6] Zhu X X and Shahzad M. Facade reconstruction using Multiview Spaceborne TomoSAR point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3541–3552. DOI: 10.1109/TGRS.2013.2273619
    [7] Shahzad M and Zhu X X. Reconstructing 2-D/3-D building shapes from spaceborne Tomographic Synthetic Aperture Radar data[C]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3, 2014, ISPRS Technical Commission III Symposium, Zurich, Switzerland, 2014.
    [8] Shahzad M and Zhu X X. Automatic detection and reconstruction of 2-D/3-D building shapes from Spaceborne TomoSAR point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1292–1310. DOI: 10.1109/TGRS.2015.2477429
    [9] Sithole G and Vosselman G. Experimental comparison of filter algorithms for bare-earth extraction from airborne laser scanning point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 59(1/2): 85–101. DOI: 10.1016/j.isprsjprs.2004.05.004
    [10] Vosselman G. Slope based filtering of laser altimetry data[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33(B3/2): 935–942.
    [11] 黄先锋, 李卉, 王潇, 等. 机载LiDAR数据滤波方法评述[J]. 测绘学报, 2009, 38(5): 466–469

    Huang Xian-feng, Li Hui, Wang Xiao, et al. Filter algorithms of airborne LiDAR data: Review and prospects[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(5): 466–469
    [12] Zhu X X and Bamler R. Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 247–258. DOI: 10.1109/TGRS.2011.2160183
    [13] Lombardini F. Differential tomography: A new framework for SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(1): 37–44. DOI: 10.1109/TGRS.2004.838371
    [14] Shahzad M and Zhu X X. Robust reconstruction of building facades for large areas using spaceborne TomoSAR point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 752–769. DOI: 10.1109/TGRS.2014.2327391
    [15] 栾晓岩. 一种TIN生成算法及其三维显示[J]. 海洋测绘, 2004, 24(5): 39–41. DOI: 10.3969/j.issn.1671-3044.2004.05.012

    Luan Xiao-yan. The method of building TIN and its three-dimensional display[J]. Hydrographic Surveying and Charting, 2004, 24(5): 39–41. DOI: 10.3969/j.issn.1671-3044.2004.05.012
    [16] 李杭, 梁兴东, 张福博, 等. 基于高斯混合聚类的阵列干涉SAR三维成像[J]. 雷达学报, 2017, 6(6): 630–639. DOI: 10.12000/JR17020

    Li Hang, Liang Xing-dong, Zhang Fu-bo, et al. 3D imaging for array InSAR based on Gaussian mixture model clustering[J]. Journal of Radars, 2017, 6(6): 630–639. DOI: 10.12000/JR17020
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  3163
  • HTML全文浏览量:  560
  • PDF下载量:  270
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-19
  • 修回日期:  2018-03-20
  • 网络出版日期:  2018-06-28

目录

    /

    返回文章
    返回