针对太赫兹波段介电参数测量的宽带准光系统

刘小明 俞俊生 陈晓东 周俊 甘露 张持建

刘小明, 俞俊生, 陈晓东, 周俊, 甘露, 张持建. 针对太赫兹波段介电参数测量的宽带准光系统[J]. 雷达学报, 2018, 7(1): 56-66. doi: 10.12000/JR17110
引用本文: 刘小明, 俞俊生, 陈晓东, 周俊, 甘露, 张持建. 针对太赫兹波段介电参数测量的宽带准光系统[J]. 雷达学报, 2018, 7(1): 56-66. doi: 10.12000/JR17110
Liu Xiaoming, Yu Junsheng, Chen Xiaodong, Zhou Jun, Gan Lu, Zhang Chijian. A Broadband Quasi-optical System for Measuring the Dielectric Properties in the Terahertz Band[J]. Journal of Radars, 2018, 7(1): 56-66. doi: 10.12000/JR17110
Citation: Liu Xiaoming, Yu Junsheng, Chen Xiaodong, Zhou Jun, Gan Lu, Zhang Chijian. A Broadband Quasi-optical System for Measuring the Dielectric Properties in the Terahertz Band[J]. Journal of Radars, 2018, 7(1): 56-66. doi: 10.12000/JR17110

针对太赫兹波段介电参数测量的宽带准光系统

DOI: 10.12000/JR17110
基金项目: 国家自然科学基金(61401031, 61505022)
详细信息
    作者简介:

    刘小明(1983–),男,副教授,博士生导师。2012年毕业于伦敦大学玛丽女王学院,同年进入北京邮电大学国际开放实验室任职,2017年以人才引进到安徽师范大学物理与电子信息学院,发表论文30多篇,出版专著2部。主要研究方向为准光学技术、毫米波与太赫兹测量技术、生物电磁学。E-mail: xiaoming.liu@ahnu.edu.cn

    俞俊生(1961–),男,教授,博士生导师,北京邮电大学国际开放实验室主任,国家863专家组成员。主要研究方向为准光学技术、毫米波与太赫兹技术、紧缩场天线测量技术。E-mail: jsyu@bupt.edu.cn

    陈晓东(1962–),男,教授,博士生导师,国家第五批“千人计划”特聘专家入选者,发表论文200多篇。主要研究方向为天线技术、毫米波与太赫兹技术、紧缩场天线测量技术。E-mail: xiaodong.chen@qmul.ac.uk

    通讯作者:

    刘小明   xiaoming.liu@ahnu.edu.cn

  • 中图分类号: TN952

A Broadband Quasi-optical System for Measuring the Dielectric Properties in the Terahertz Band

Funds: The National Natural Science Foundation of China (61401031, 61505022)
  • 摘要: 该文针对太赫兹波段材料的介电参数提取的需求,利用准光学技术设计了一套宽带介电参数测量系统并讨论了自由空间的介电参数提取方法。通过平面扫描的方法验证了系统电磁传输特性。结果表明,准光系统的近场参数与设计结果相吻合。利用石英硼化玻璃和水样品进行了测试,并利用数值方法对介电参数进行提取。测试结果表明,利用准光方法测试所得到的介电参数与典型值相吻合,进一步验证了该方法的有效性。

     

  • 图  1  利用准光器件可以将高斯波束转换成另外一个束腰半径的高斯波束

    Figure  1.  Transformation of Gaussian beam to another of different beam waist

    图  2  高斯望远镜示意图。两个聚焦镜面的距离为两个聚焦镜面焦距之和

    Figure  2.  The diagram of a Gaussian telescope. The distance between the two focusing mirrors equals the sum of their focal lengths

    图  3  波纹喇叭结构示意图及高斯波束束腰位置

    Figure  3.  Structure of a corrugated horn and the location of the beam waist

    图  4  波纹喇叭的模式转换及模式场分布图

    Figure  4.  Mode transformation and filed distribution of a corrugated horn

    图  5  90 GHz以及325 GHz喇叭天线仿真方向图

    Figure  5.  Radiation patterns of the 90 GHz and 325 GHz

    图  6  喇叭实物图

    Figure  6.  Photograph of the fabricated corrugated horns

    图  7  准光系统的设计示意图

    Figure  7.  Illustration of the design of a quasi-optical system

    图  8  准光系统工程模型图及实物图

    Figure  8.  The engineering model and fabricated photography of the quasi-optical system

    图  9  90 GHz和325 GHz近场测试结果

    Figure  9.  The near-field measurement of 90 GHz and 325 GHz channels

    图  10  90 GHz和325 GHz远场测试结果

    Figure  10.  The far-field measurement of 90 GHz and 325 GHz channels

    图  11  单层介电参数提取理论模型

    Figure  11.  Theoretical model for dielectric retrieve of single layer sample

    图  12  石英硼化玻璃在W波段和220~325 GHz频段的介电参数

    Figure  12.  The dielectric properties of boron silicon in the W band and the range of 220~325 GHz

    图  13  去离子水在W波段和220~325 GHz频段的介电参数

    Figure  13.  The dielectric properties of de-ionized water in the W band and the range of 220~325 GHz

  • [1] 刘小明. 介电常数及其测量技术[M]. 北京: 北京邮电大学出版社, 2015: 1–16.

    Liu Xiao-ming. Dielectric and Measurement Techniques[M]. Beijing: Beijing University of Posts and Telecommunications Press, 2015: 1–16.
    [2] Janssen M A, Paganelli F, Lorenz R D, et al. Dielectric properties of titan’s surface using the Cassini RADAR radiometer[J]. Bulletin of the American Astronomical Society, 2006, 38(9): 586.
    [3] Zhang L B, Zhou P H, Zhang H B, et al. A broadband radar absorber based on perforated magnetic polymer composites embedded with FSS[J]. IEEE Transactions on Magnetics, 2014, 50(5): 4004305. DOI: 10.1109/TMAG.2013.2293129
    [4] 陈权, 曾江源, 李震, 等. 遥感监测介电常数与土壤含水率关系模型[J]. 农业工程学报, 2012, 28(12): 171–175. DOI: 10.3969/j.issn.1002-6819.2012.12.028

    Chen Quan, Zeng Jiang-yuan, Li Zhen, et al. Relationship model of soil moisture and dielectric constant monitored with remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(12): 171–175. DOI: 10.3969/j.issn.1002-6819.2012.12.028
    [5] 连懿, 陈圣波, 孟治国, 等. 基于嫦娥二号卫星微波辐射计亮温数据反演月壤介电常数[J]. 地球科学—中国地质大学学报, 2014, 39(11): 1644–1650. DOI: 10.3799/dqkx.2014.158

    Lian Yi, Chen Shengbo, Meng Zhiguo, et al. Dielectric constant of Lunar soil derived from Chang’E-2 passive microwave radiometer measurements[J]. Earth Science—Journal of China University of Geosciences, 2014, 39(11): 1644–1650. DOI: 10.3799/dqkx.2014.158
    [6] 杨洋, 景磊. 金属介电常数对雷达目标散射截面的影响[J]. 激光与红外, 2013, 43(2): 155–158. DOI: 10.3969/j.issn.1001-5078.2013.02.008

    Yang Yang and Jing Lei. Impact of the metal permittivity on radar target scattering cross section[J]. Laser&Infrared, 2013, 43(2): 155–158. DOI: 10.3969/j.issn.1001-5078.2013.02.008
    [7] 潘顺康, 吕善伟, 王伟, 等. 介质参数对吸收体电磁散射影响[J]. 桂林电子科技大学学报, 2007, 27(3): 171–174. DOI: 10.3969/j.issn.1673-808X.2007.03.001

    Pan Shun-kang, Lv Shan-wei, Wang Wei, et al. Effects of dielectric parameters on electromagnetic scattering of absorber[J]. Journal of Guilin University of Electronic Technology, 2007, 27(3): 171–174. DOI: 10.3969/j.issn.1673-808X.2007.03.001
    [8] ASTM. ASTM D150–2011 Standard test methods for AC loss characteristics and permittivity (dielectric constant) of solid electrical insulation[S]. ASTM, 2011.
    [9] Baker-Jarvis J, Vanzura E J, and Kissick W A. Improved technique for determining complex permittivity with the transmission/reflection method[J]. IEEE Transactions on Microwave Theory and Techniques, 1990, 38(8): 1096–1103. DOI: 10.1109/22.57336
    [10] Stuchly M A, Athey T W, Samaras G M, et al. Measurement of radio frequency permittivity of biological tissues with an open-ended coaxial line: Part II—Experimental results[J]. IEEE Transactions on Microwave Theory and Techniques, 1982, 30(1): 87–92. DOI: 10.1109/TMTT.1982.1131022
    [11] Komiyama B, Kiyokawa M, and Matsui T. Open resonator for precision dielectric measurements in the 100 GHz band[J]. IEEE Transactions on Microwave Theory and Techniques, 1991, 39(10): 1792–1796. DOI: 10.1109/22.88556
    [12] Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910–928. DOI: 10.1109/22.989974
    [13] 魏明贵, 梁达川, 谷建强, 等. 太赫兹时域雷达成像研究[J]. 雷达学报, 2015, 4(2): 222–229. DOI: 10.12000/JR14125

    Wei Ming-gui, Liang Da-chuan, Gu Jian-qiang, et al. Terahertz radar imaging based on time-domain spectroscopy[J]. Journal of Radars, 2015, 4(2): 222–229. DOI: 10.12000/JR14125
    [14] 俞俊生, 陈晓东. 毫米波与亚毫米波准光技术[M]. 北京: 北京邮电大学出版社, 2010: 1–10.

    Yu Jun-sheng and Chen Xiao-dong. Millimeter Wave and Sub-millimeter Wave Quasi-optical Technologies[M]. Beijing: Beijing University of Posts and Telecommunications Press, 2010: 1–10.
    [15] Liu X M, Chen H J, Yang B, et al. Dielectric property measurement of gold nanoparticle dispersions in the millimeter wave range[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2013, 34(2): 140–151. DOI: 10.1007/s10762-013-9957-7
    [16] Goldsmith P F. Quasioptical Systems: Gaussian Beam Quasioptical Propogation and Applications[M]. New York: IEEE Press, 1998: 1–50.
    [17] Soares P A G, Pinho P, and Wuensche C A. High performance corrugated horn antennas for CosmoGal satellite[J]. Procedia Technology, 2014, 17: 667–673. DOI: 10.1016/j.protcy.2014.10.198
    [18] Olver A D, Clarricoats P J B, Kishk A A, et al.. Microwave Horns and Feeds[M]. New York: IEEE Press, 1994: 229–315.
    [19] Ade P A, Wylde R J, and Zhang J. Ultra-Gaussian Horns for ClOVER—A B-Mode CMB experiment[C]. Proceedings of the 20th International Symposium on Space Terahertz Technology, Charlottesville, USA, 2009: 128–137.
    [20] Granet C and James G L. Design of corrugated horns: A primer[J]. IEEE Antennas and Propagation Magazine, 2005, 47(2): 76–84. DOI: 10.1109/MAP.2005.1487785
    [21] Yang B, Wylde R J, Martin D H, et al. Determination of the gyrotropic characteristics of hexaferrite ceramics from 75 to 600 GHz[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(12): 3587–3597. DOI: 10.1109/TMTT.2010.2086290
    [22] Gagnon N, Shaker J, Roy L, et al. Low-cost free-space measurement of dielectric constant at Ka band[J]. IEE Proceedings-Microwaves,Antennas and Propagation, 2004, 151(3): 271–276. DOI: 10.1049/ip-map:20040264
  • 加载中
图(13)
计量
  • 文章访问数:  2647
  • HTML全文浏览量:  860
  • PDF下载量:  436
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-24
  • 修回日期:  2017-12-21
  • 网络出版日期:  2018-02-28

目录

    /

    返回文章
    返回