基于双频联合处理的太赫兹InISAR成像方法

蒋彦雯 邓彬 王宏强 秦玉亮 庄钊文

蒋彦雯, 邓彬, 王宏强, 秦玉亮, 庄钊文. 基于双频联合处理的太赫兹InISAR成像方法[J]. 雷达学报, 2018, 7(1): 139-146. doi: 10.12000/JR17109
引用本文: 蒋彦雯, 邓彬, 王宏强, 秦玉亮, 庄钊文. 基于双频联合处理的太赫兹InISAR成像方法[J]. 雷达学报, 2018, 7(1): 139-146. doi: 10.12000/JR17109
Jiang Yanwen, Deng Bin, Wang Hongqiang, Qin Yuliang, Zhuang Zhaowen. Improved Terahertz InISAR Imaging Method Based on Joint Processing of Dual-frequency Data[J]. Journal of Radars, 2018, 7(1): 139-146. doi: 10.12000/JR17109
Citation: Jiang Yanwen, Deng Bin, Wang Hongqiang, Qin Yuliang, Zhuang Zhaowen. Improved Terahertz InISAR Imaging Method Based on Joint Processing of Dual-frequency Data[J]. Journal of Radars, 2018, 7(1): 139-146. doi: 10.12000/JR17109

基于双频联合处理的太赫兹InISAR成像方法

doi: 10.12000/JR17109
基金项目: 国家自然科学基金(61701513, 61571011)
详细信息
    作者简介:

    蒋彦雯,女,国防科技大学电子科学学院博士生,从事太赫兹雷达成像、太赫兹雷达信号处理研究。E-mail: j1991yuwen@163.com

    邓 彬,男,国防科技大学电子科学学院副研究员,从事合成孔径雷达、太赫兹雷达成像等研究。E-mail: dengbin_nudt@163.com

    王宏强,男,国防科技大学电子科学学院研究员,973技术首席,原863太赫兹专家,中国兵工学会太赫兹应用技术专业委员会委员,从事太赫兹雷达、雷达信号处理和自动目标识别等研究。E-mail: oliverwhq@tom.com

    秦玉亮,男,国防科技大学电子科学学院副研究员,主要从事太赫兹雷达、雷达关联成像和电磁涡旋方面研究。E-mail: qinyuliang@nudt.edu.cn

    庄钊文,男,国防科技大学教授,主要从事目标识别方面研究

    通讯作者:

    邓彬   dengbin_nudt@163.com

  • 中图分类号: TN95

Improved Terahertz InISAR Imaging Method Based on Joint Processing of Dual-frequency Data

Funds: The National Natural Science Foundation of China (61701513, 61571011)
  • 摘要: 为提高太赫兹InISAR成像精度,该文提出了一种基于双频联合处理的成像方法。将雷达回波信号在快时间域分为两部分,分别按传统InISAR方法进行成像,再对两部分的成像结果进行比较分析,去除冗余点和坏点,得到最终的InISAR成像结果。针对飞机的散射点模型,给出了双频联合处理方法的InISAR成像结果,并仿真分析成像结果的均方根误差,结果表明,相比于传统InISAR成像方法,基于双频联合处理的InISAR成像方法在不同信噪比条件下均能有效提升成像精度。

     

  • 图  1  L型天线InISAR成像系统

    Figure  1.  InISAR imaging geometry with L-antennas

    图  3  飞机3维散射中心模型

    Figure  3.  The 3D scatter model of airplane

    图  2  基于双频联合处理的太赫兹InISAR成像方法

    Figure  2.  The InISAR imaging method based on the joint processing of dual-frequency data

    图  4  基于双频联合处理的InISAR 3维成像结果

    Figure  4.  The 3D InISAR imaging result based on the joint processing of dual-frequency data

    图  5  传统InISAR 3维成像结果

    Figure  5.  The 3D InISAR imaging result based on the conventional method

    图  6  本文方法与传统方法成像误差比较结果

    Figure  6.  The error comparison between the proposed method and the conventional method

    表  1  成像仿真参数

    Table  1.   The main parameters of the imaging simulation

    参数 数值
    干涉基线长度 1 m
    中心频率 330 GHz
    带宽 20 GHz
    PRF 2 kHz
    脉宽 400 μs
    采样率 30 MHz
    成像积累时长 0.6 s
    目标运动速度 (300 m/s, 0, 0)
    目标初始位置坐标 (0, 50 km, 10 km)
    下载: 导出CSV
  • [1] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.

    Bao Zheng, Xing Meng-dao, and Wang Tong. Technology of Radar Imaging[M]. Beijing: Publishing House of Electronics Industry, 2005.
    [2] Zhang X P, Liao G S, Zhu S Q, et al.. An unambiguous radial velocity estimation method based on interferometric phase in range frequency domain[C]. Proceedings of the 14th International Radar Symposium (IRS), Dresden, Germany, 2013, 1: 543–548.
    [3] 毕严先, 魏少明, 王俊, 等. 基于最小二乘估计的InISAR空间目标三维成像方法[J]. 电子与信息学报, 2016, 38(5): 1079–1084. DOI: 10.11999/JEIT151000

    Bi Yan-xian, Wei Shao-ming, Wang Jun, et al. Interferometric ISAR imaging for 3-D geometry of uniformly rotating targets based on least squares estimation method[J]. Journal of Electronics&Information Technology, 2016, 38(5): 1079–1084. DOI: 10.11999/JEIT151000
    [4] Wu W Z, Hu P H, Xu S Y, et al. Image registration for InISAR based on joint translational motion compensation[J]. IET Radar,Sonar&Navigation, 2017, 11(10): 1597–1603.
    [5] Ma M, Li D J, Du J B, et al.. Signal processing of InISAR with Long orthogonal baselines for air target three-dimensional localization[C]. Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 2016: 1–4.
    [6] 牧凯军, 张振伟, 张存林. 太赫兹科学与技术[J]. 中国电子科学研究院学报, 2009, 4(3): 221–230, 237

    Mu Kai-jun, Zhang Zhen-wei, and Zhang Cun-lin. Terahertz science and technology[J]. Journal of China Academy of Electronics and Information Technology, 2009, 4(3): 221–230, 237
    [7] Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910–928. DOI: 10.1109/22.989974
    [8] Siegel P H. THz for space: The golden age[C]. Proceedings of IEEE MTT-S International Microwave Symposium Digest (MTT), Anaheim, CA, USA, 2010: 816–819.
    [9] Deng Bin, Chen Shuo, Luo Chneg-gao, et al. Review of terahertz coded-aperture imaging[J]. Journal of Infrared and Millimeter Waves, 2017, 36(3): 302–310.
    [10] Jiang Y W, Deng B, Wang H Q, et al. An effective nonlinear phase compensation method for FMCW terahertz radar[J]. IEEE Photonics Technology Letters, 2016, 28(15): 1684–1687. DOI: 10.1109/LPT.2016.2558462
    [11] Li D J, Ma M, Du J B, et al.. Moving target imaging detection for millimeter-wave InISAR[C]. Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 2016: 286–289.
    [12] 刘承兰, 高勋章, 黎湘. 干涉式逆合成孔径雷达成像技术综述[J]. 信号处理, 2011, 27(5): 737–748

    Liu Cheng-lan, Gao Xun-zhang, and Li Xiang. Review of interferometric ISAR imaging[J]. Signal Processing, 2011, 27(5): 737–748
    [13] Zhang Q and Yeo T S. Three-dimensional SAR imaging of a ground moving target using the InISAR technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(9): 1818–1828. DOI: 10.1109/TGRS.2004.831863
    [14] Wang Y and Li X L. Three-dimensional interferometric ISAR imaging for the ship target under the Bi-static configuration[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(4): 1505–1520. DOI: 10.1109/JSTARS.2015.2513774
    [15] 马萌, 李道京, 李烈辰, 等. 正交长基线毫米波InISAR运动目标三维成像[J]. 红外与毫米波学报, 2016, 35(4): 488–495. DOI: 10.11972/j.issn.1001-9014.2016.04.018

    Ma Meng, Li Dao-jing, Li Lie-chen, et al. 3-D imaging for moving targets based on millimeter-wave InISAR with long orthogonal baselines[J]. Journal of Infrared and Millimeter Waves, 2016, 35(4): 488–495. DOI: 10.11972/j.issn.1001-9014.2016.04.018
    [16] Xu G, Xing M D, Xia X G, et al. 3D geometry and motion estimations of maneuvering targets for interferometric ISAR with sparse aperture[J]. IEEE Transactions on Image Processing, 2016, 25(5): 2005–2020. DOI: 10.1109/TIP.2016.2535362
    [17] 刘承兰, 高勋章, 贺峰, 等. 一种基于相位校正的InISAR图像配准新方法[J]. 国防科技大学学报, 2011, 33(5): 116–122

    Liu Cheng-lan, Gao Xun-zhang, He Feng, et al. A novel method for image registration in InISAR imaging based on phase correction[J]. Journal of National University of Defense Technology, 2011, 33(5): 116–122
    [18] 张冬晨. InISAR三维成像的关键技术研究[D]. [博士论文], 中国科学技术大学, 2009.

    Zhang Dong-chen. Research on the key techniques of interferometric inverse synthetic aperture radar imaging[D]. [Ph.D. dissertation], University of Science and Technology of China, 2009.
    [19] 刘承兰. 干涉逆合成孔径雷达(InISAR)三维成像技术研究[D]. [博士论文], 国防科学技术大学, 2012.

    Liu Cheng-lan. Research on interferometric inverse synthetic aperture radar three-dimensional imaging[D]. [Ph. D. dissertation], National University of Defense Technology, 2012.
    [20] Richards M A. 邢孟道, 王彤, 李真芳, 等译. 雷达信号处理基础[M]. 北京: 电子工业出版社, 2010.

    Richards M A. Xing Meng-dao, Wang Tong, Li Zhen-fang, et al Translation. Fundamentals of Radar Signal Processing[M]. Beijing: Publishing House of Electronics Industry, 2010.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  2906
  • HTML全文浏览量:  612
  • PDF下载量:  483
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-06
  • 修回日期:  2018-01-29
  • 网络出版日期:  2018-02-28

目录

    /

    返回文章
    返回