基于波导缝隙阵列的新型太赫兹频率扫描天线

李世超 侯培培 屈俭 郝丛静 贾渠 李刚 李超

李世超, 侯培培, 屈俭, 郝丛静, 贾渠, 李刚, 李超. 基于波导缝隙阵列的新型太赫兹频率扫描天线[J]. 雷达学报, 2018, 7(1): 119-126. doi: 10.12000/JR17098
引用本文: 李世超, 侯培培, 屈俭, 郝丛静, 贾渠, 李刚, 李超. 基于波导缝隙阵列的新型太赫兹频率扫描天线[J]. 雷达学报, 2018, 7(1): 119-126. doi: 10.12000/JR17098
Li Shichao, Hou Peipei, Qu Jian, Hao Congjing, Jia Qu, Li Gang, Li Chao. A Novel Terahertz Frequency Scanning Antenna Based on Slotted Waveguide Arrays[J]. Journal of Radars, 2018, 7(1): 119-126. doi: 10.12000/JR17098
Citation: Li Shichao, Hou Peipei, Qu Jian, Hao Congjing, Jia Qu, Li Gang, Li Chao. A Novel Terahertz Frequency Scanning Antenna Based on Slotted Waveguide Arrays[J]. Journal of Radars, 2018, 7(1): 119-126. doi: 10.12000/JR17098

基于波导缝隙阵列的新型太赫兹频率扫描天线

DOI: 10.12000/JR17098
详细信息
    作者简介:

    李世超(1988–),男,工学博士,主要研究方向为太赫兹成像技术、阵列天线技术、小天线技术。E-mail: lishichao@caaayl.com

    侯培培(1982–),男,工程师,主要研究方向为太赫兹成像技术。E-mail: houpeipei@caaayl.com

    屈 俭(1984–),男,工程师,主要研究方向为太赫兹成像技术。E-mail: qujian@caaayl.com

    郝丛静(1987–),女,工程师,主要研究方向为毫米波与太赫兹准光技术、反射面天线技术。E-mail: haocongjing@caaayl.com

    贾 渠(1962–),男,研究员,主要研究方向为太赫兹成像技术、光纤传感技术、测控技术。E-mail: jiaqu@caaayl.com

    李 刚(1977–),男,主要研究方向为太赫兹成像技术、光纤传感技术、测控技术。E-mail: ligang@caaayl.com

    李 超(1976–),男,副研究员,主要研究方向为太赫兹成像技术、天线理论与技术、合成孔径信号处理技术、人工电磁材料等。E-mail: cli@mail.ie.ac.cn

    通讯作者:

    屈俭   qujian@caaayl.com

  • 中图分类号: TN95

A Novel Terahertz Frequency Scanning Antenna Based on Slotted Waveguide Arrays

  • 摘要: 为缩短太赫兹系统成像时间,该文提出将频率扫描天线应用于太赫兹成像系统中,并设计了一种基于波导缝隙阵列的太赫兹频率扫描天线。该文采用泰勒综合法降低副瓣电平,通过软件仿真结合功率传输法设计最优的缝隙分布。太赫兹波导缝隙阵列天线具有加工简单、成本低的优势,通过太赫兹准光测试系统对天线性能进行测试,实测天线扫描角度可达40°,增益约为15 dB,副瓣电平抑制优于–20 dB。测试结果表明太赫兹波导缝隙天线具有扫描角度大和副瓣低的优良特性,在太赫兹成像和目标探测等领域有巨大的应用价值。

     

  • 图  1  波导缝隙阵列结构示意图

    Figure  1.  Description of the slot array antenna

    图  2  归一化缝隙电导分布

    Figure  2.  Normalized admittance distribution

    图  3  不同频率下缝隙偏移量与归一化电导对应关系

    Figure  3.  Relationship of the normalized admittance with slot offset for different frequencies

    图  4  缝隙偏移量分布

    Figure  4.  Distribution of the slot offsets

    图  5  波导缝隙天线实物图

    Figure  5.  Fabricated slotted waveguide antenna

    图  6  波导缝隙天线实验测试示意图

    Figure  6.  Description of the measurement system

    图  7  实测和仿真扫描角度对比

    Figure  7.  Comparison of the measured and simulated scanned angles

    图  8  实测扫描方向图

    Figure  8.  Normalized radiation patterns of the antenna in experiment

    图  9  实测和仿真的扫描方向图对比

    Figure  9.  Comparison of the scanning radiation patterns for different frequencies

    图  10  实测和仿真的副瓣电平比较

    Figure  10.  Comparison of the measured and simulated sidelobe levels

    表  1  太赫兹频率扫描天线性能对比

    Table  1.   Performance comparison of the Terahertz frequency scanning antennas

    天线形式 工作频率(GHz) 扫描范围(°) 增益(dBi) 副瓣电平(dB)
    反射栅天线[6] 微带反射面 180~220 15 30 –13
    漏波天线[7] 介质波导 206~218 11 15 –13
    波导缝隙天线[19] 1维波导缝隙阵列 130~180 40 17 –13
    波导缝隙天线[20] 2维波导缝隙阵列 130~180 40 27 –10
    波导口阵列[13] 1维波导相移网络 270~330 40 –15
    本文天线 1维波导缝隙阵 165~215 40 15 –20
    下载: 导出CSV
  • [1] Appleby R and Bruce Wallace H. Standoff detection of weapons and contraband in the 100 GHz to 1 THz region[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(11): 2944–2956. DOI: 10.1109/TAP.2007.908543
    [2] Cooper K B, Dengler R J, Llombart N, et al. THz imaging radar for standoff personnel screening[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 169–182. DOI: 10.1109/TTHZ.2011.2159556
    [3] Shah U, Decrossas E, Jung-Kubiak C, et al. Submillimeter-wave 3.3-bit RF MEMS phase shifter integrated in micromachined waveguide[J]. IEEE Transactions on Terahertz Science and Technology, 2016, 6(5): 706–715.
    [4] Johnson R C. Antenna Engineering Handbook[M]. 3rd Ed., New York: McGraw-Hill, 1993: 19–26.
    [5] Li S C, Li C, Zhang Xi J, et al. Achievement of beam steering in terahertz band based on frequency-scanning grating-reflector antenna[J]. Electronics Letters, 2014, 50(3): 136–138. DOI: 10.1049/el.2013.3708
    [6] Li S C, Li C, Zhang Xi J, et al. A planar binary structure for realizing frequency controlled beam-steering at 0.2-Terahertz band[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1007–1010. DOI: 10.1109/LAWP.2014.2326794
    [7] Basu A and Itoh T. Dielectric waveguide-based leaky-wave antenna at 212 GHz[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(11): 1665–1673. DOI: 10.1109/8.736619
    [8] Zandieh A, Abdellatif A S, Taeb A, et al. Low-cost and high-efficiency antenna for millimeter-wave frequency-scanning applications[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 116–119. DOI: 10.1109/LAWP.2013.2243572
    [9] Dong Y D and Itoh T. Composite right/left-handed substrate integrated waveguide and half mode substrate integrated waveguide leaky-wave structures[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(3): 767–775. DOI: 10.1109/TAP.2010.2103025
    [10] Xu J F, Hong W, Tang H J, et al. Half-mode substrate integrated waveguide leaky-wave antenna for millimeter wave applications[J]. IEEE Antennas and Wireless Propagation Letters, 2008, 7: 85–88. DOI: 10.1109/LAWP.2008.919353
    [11] Patrovsky A and Wu K. Substrate integrated image guide (SIIG)—A planar dielectric waveguide technology for millimeter-wave application[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(6): 2872–2879.
    [12] Mondal P and Wu K. A leaky-wave antenna in substrate integrated non-radiative dielectric (SINRD) waveguide with controllable scanning rate[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(4): 2294–2297. DOI: 10.1109/TAP.2012.2231914
    [13] Alvarez Y, Camblor R, Garcia C, et al. Submillimeter-wave frequency scanning system for imaging applications[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(11): 5689–5696. DOI: 10.1109/TAP.2013.2275747
    [14] Camblor R, Ver Hoeye S, Fernández M, et al. Full 2-D submillimeter-wave frequency scanning array[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4486–4494. DOI: 10.1109/TAP.2017.2722538
    [15] 赵一, 曹祥玉, 张迪, 等. 一种兼有高增益和宽带低散射特征的波导缝隙天线设计[J]. 物理学报, 2014, 63(3): 034101. DOI: 10.7498/aps.63.034101

    Zhao Yi, Cao Xiang-Yu, Zhang Di, et al. Design of high-gain broadband low-RCS waveguide slot antenna[J]. Acta Physica Sinica, 2014, 63(3): 034101. DOI: 10.7498/aps.63.034101
    [16] 刘涛, 曹祥玉, 高军, 等. 基于超材料的吸波体设计及其波导缝隙天线应[J]. 物理学报, 2012, 61(18): 184101. DOI: 10.7498/aps.61.184101

    Liu Tao, Cao Xiang-Yu, Gao Jun, et al. Design of metamaterial absorber and its applications for waveguide slot antenna[J]. Acta Physica Sinica, 2012, 61(18): 184101. DOI: 10.7498/aps.61.184101
    [17] 李文强, 曹祥玉, 高军, 等. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线[J]. 物理学报, 2015, 64(9): 094102. DOI: 10.7498/aps.64.094102

    Li Wen-Qiang, Cao Xiang-Yu, Gao Jun, et al. Low-RCS waveguide slot array antenna based on a metamaterial absorber[J]. Acta Physica Sinica, 2015, 64(9): 094102. DOI: 10.7498/aps.64.094102
    [18] Rengarajan S R, Zawadzki M S, and Hodges R E. Waveguide-slot array antenna designs for low-average-sidelobe specifications[J]. IEEE Antennas and Propagation Magazine, 2010, 52(6): 89–98. DOI: 10.1109/MAP.2010.5723227
    [19] Cullens E D, Ranzani L, Vanhille K J, et al. Micro-fabricated 130–180 GHz frequency scanning waveguide arrays[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(8): 3647–3654. DOI: 10.1109/TAP.2012.2201089
    [20] Ranzani L, Kuester D, Vanhille K J, et al. G-Band micro-fabricated frequency-steered arrays with 2°/GHz beam steering[J].IEEE Transactions on Terahertz Science and Technology, 2013, 3(5): 566–573. DOI: 10.1109/TTHZ.2013.2271381
    [21] Melezhik P N, Razskazovskiy V B, Reznichenko N G, et al.. High-efficiency millimeter wave coherent radar for airport surface movement monitoring and control[C]. Proceedings of the 8th European Radar Conference, Manchester, UK, 2011: 361–364.
    [22] Pollard B D and Sadowy G. Next generation millimeter-wave radar forsafe planetary landing[C]. The 2005 IEEE Aerospace Conference, Big Sky, MT, USA, 2005: 1213–1219.
    [23] Martin C A, Clark S E, Lovberg J A, et al.. Real-time wide-field-of-view passive millimeter-wave imaging[C]. Proceedings of SPIE Infrared and Passive Millimeter-Wave Imaging Systems: Design, Analysis, Modeling, and Testing, Orlando, FL, 2002: 341–349.
    [24] Yang S T and Ling H. Application of a microstrip leaky wave antenna for range-azimuth tracking of humans[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1384–1388. DOI: 10.1109/LGRS.2013.2243401
    [25] Geibig T, Shoykhetbrod A, Hommes A, et al.. Compact 3D imaging radar based on FMCW driven frequency-scanning antennas[C]. Proceedings of 2016 IEEE Radar Conference, Philadelphia, PA, USA, 2016: 1–5.
    [26] Hosseininejad S E and Komjani N. Optimum design of traveling-wave SIW slot array antennas[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(4): 1971–1975. DOI: 10.1109/TAP.2012.2233704
    [27] Robinson J and Rahmat-Samii Y. Particle swarm optimization in electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(2): 397–407. DOI: 10.1109/TAP.2004.823969
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  2763
  • HTML全文浏览量:  584
  • PDF下载量:  583
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-06
  • 修回日期:  2018-01-19
  • 网络出版日期:  2018-02-28

目录

    /

    返回文章
    返回