Novel Orthogonal Random Phase-Coded Pulsed Radar for Automotive Application

Xu Zhihuo Shi Quan Sun Ling

许致火, 施佺, 孙玲. 一种正交随机相位编码的新型汽车脉冲雷达[J]. 雷达学报, 2018, 7(3): 364-375. doi: 10.12000/JR17083
引用本文: 许致火, 施佺, 孙玲. 一种正交随机相位编码的新型汽车脉冲雷达[J]. 雷达学报, 2018, 7(3): 364-375. doi: 10.12000/JR17083
Xu Zhihuo, Shi Quan, Sun Ling. Novel Orthogonal Random Phase-Coded Pulsed Radar for Automotive Application[J]. Journal of Radars, 2018, 7(3): 364-375. doi: 10.12000/JR17083
Citation: Xu Zhihuo, Shi Quan, Sun Ling. Novel Orthogonal Random Phase-Coded Pulsed Radar for Automotive Application[J]. Journal of Radars, 2018, 7(3): 364-375. doi: 10.12000/JR17083

Novel Orthogonal Random Phase-Coded Pulsed Radar for Automotive Application

DOI: 10.12000/JR17083
Funds: The National Natural Science Foundation of China (61771265), The Open Fund of the Nantong University-Nantong Joint Research Center for Intelligent Information Technology (KFKT2016A11), The Nantong Natural Science and Technology Project (GY12016017), The Natural Science Fund for Colleges and Universities in Jiangsu Province (17KJB510047), The Scientific Research Start-up Foundation for Talent Introduction of Nantong University (17R30).
More Information
    Author Bio:

    Xu Zhihuo received the Ph.D. degree in communication and information system in 2016, from the University of Chinese Academy of Sciences (UCAS) and the Institute of Electronics of the Chinese Academy of Sciences (IECAS), Beijing, China. He joined Radar and Image Research Group, School of transportation in Nantong University, China, in 2016, where he is currently a lecturer. His current research interests include advanced radar signal and image processing methodologies. E-mail: xuzhihuo@gmail.com

    Shi Quan was born in Haimen, China, in 1973. He is currently a professor in the School of Transpiration, Nantong University, China. He has authored more than 60 papers since 2007, of which more than 40 are peer-reviewed and well-known journal papers. His research is focused on the development of signal and image processing and big data techniques. E-mail: sq@ntu.edu.cn

    Sun Ling received the Ph.D. degree in circuit and system in 2008, from the Southeast University. She is currently a professor in the Jiangsu Key Laboratory of ASCI Design, Nantong University, China. Her research is focused on radio frequency circuit design and signal processing. E-mail: sunl@ntu.edu.cn

    Corresponding author: Xu Zhihuo. E-mail: xuzhihuo@gmail.com
  • 摘要: 相比遥感雷达,汽车雷达探测距离为0–1000 m近距离的车辆及行人等目标。常规的单天线汽车脉冲雷达通常发射纳秒级的短脉冲以实现近距目标的高分辨率探测。但在工程上实现纳秒级的高功率发射信号是非常困难的并需要很高的成本。另外,现有的汽车雷达存在空间角度分辨率低、点目标脉冲响应函数旁瓣高及汽车雷达间 相互强干扰的瓶颈问题。为克服这些难题,论文首先提出双天线脉冲雷达技术,使得雷达在测量发射大时宽脉冲信号成为可能。其次,通过数字波束形成技术实现高的空间分辨率,运用脉冲压缩技术实现距离向高分辨率,采用脉冲多普勒技术计算得到高分辨率的径向速度场。最后,为克服点目标脉冲响应函数旁瓣效应及汽车雷达间相互干扰的问题,提出了一种新的随机相位编码雷达信号。采用提出的雷达信号,汽车雷达间的强干扰可被有效抑制,并且在不损失信噪比的情况下,雷达的点目标脉冲响应函数的峰值旁瓣比可达–45 dB。大量的数值仿真实验验证了提出方法的有效性及先进性。

     

  • Figure  1.  Conceptual sketch of reducing the effect of sidelobes

    Figure  2.  SNR loss and equivalent transmitter power loss versus PSLR in the window processing

    Figure  3.  Schematic of the proposed radar

    Figure  4.  System timing and synchronization diagram of the proposed radar

    Figure  5.  Conceptual sketch of signal processing for the proposed radar

    Figure  7.  Ambiguity functions

    Figure  6.  The performance of the proposed waveforms

    Figure  8.  Point target focused by using OLFM (a), and ORPC (b). Comparison of the range profiles were showed in (c).

    Figure  9.  A representative scenario designed for experiment

    Figure  10.  High-resolution imaging of range, azimuth and velocity for the targets.

    Figure  11.  Results on the presences of high interferences by using single LFM from OLFM (a), OLFM (b), Windowed OLFM (c), and ORPC (d), respectively.

  • [1] Abou-Jaoude R. ACC radar sensor technology, test requirements, and test solutions[J]. IEEE Transactions on Intelligent Transportation Systems, 2003, 4(3): 115–122. DOI: 10.1109/TITS.2003.821286
    [2] Patole S M, Torlak M, Wang D, et al. Automotive radars: A review of signal processing techniques[J]. IEEE Signal Processing Magazine, 2017, 34(2): 22–35. DOI: 10.1109/MSP.2016.2628914
    [3] Kronauge M and Rohling H. New chirp sequence radar waveform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 2870–2877. DOI: 10.1109/TAES.2014.120813
    [4] Wu S G, Decker S, Chang P, et al. Collision sensing by stereo vision and radar sensor fusion[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(4): 606–614. DOI: 10.1109/TITS.2009.2032769
    [5] Gresham I, Jain N, Budka T, et al. A compact manufacturable 76–77 GHz radar module for commercial ACC applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(1): 44–58. DOI: 10.1109/22.899961
    [6] Tsang S H, Hall P S, Hoare E D, et al. Advance path measurement for automotive radar applications[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(3): 273–281. DOI: 10.1109/TITS.2006.880614
    [7] Guo Kun-Yi, Hoare E G, Jasteh D, et al. Road edge recognition using the stripe Hough transform from millimeter-wave radar images[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 825–833. DOI: 10.1109/TITS.2014.2342875
    [8] Mao X S, Inoue D, Matsubara H, et al. Demonstration of in-car doppler laser radar at 1.55 μm for range and speed measurement[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2): 599–607. DOI: 10.1109/TITS.2012.2230325
    [9] Lee J E, Lim H S, Jeong S H, et al. Enhanced iron-tunnel recognition for automotive radars[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4412–4418. DOI: 10.1109/TVT.2015.2460992
    [10] Kellner D, Barjenbruch M, Klappstein J, et al. Tracking of extended objects with high-resolution doppler radar[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(5): 1341–1353. DOI: 10.1109/TITS.2015.2501759
    [11] Wang X, Xu L H, Sun H B, et al. On-road vehicle detection and tracking using MMW radar and monovision fusion[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(7): 2075–2084. DOI: 10.1109/TITS.2016.2533542
    [12] Wang H N, Huang Y W, and Chung S J. Spatial diversity 24-GHz FMCW radar with ground effect compensation for automotive application[J]. IEEE Transactions on Vehicular Technology, 2017, 66(2): 965–973. DOI: 10.1109/TVT.2016.2565608
    [13] Askeland S A and Ekman T. Tracking with a high-resolution 2D spectral estimation based automotive radar[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5): 2418–2423. DOI: 10.1109/TITS.2015.2407571
    [14] Lee M S and Kim Y H. Design and performance of a 24-GHz switch-antenna array FMCW radar system for automotive applications[J]. IEEE Transactions on Vehicular Technology, 2010, 59(5): 2290–2297. DOI: 10.1109/TVT.2010.2045665
    [15] Hu C X, Liu Y M, Meng H D, et al. Randomized switched antenna array FMCW radar for automotive applications[J]. IEEE Transactions on Vehicular Technology, 2014, 63(8): 3624–3641. DOI: 10.1109/TVT.2014.2308895
    [16] Shirakawa K. PRISM: An in-vehicle CPU-oriented novel azimuth estimation technique for electronic-scan 76-GHz adaptive-cruise-control radar system[J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(3): 451–462. DOI: 10.1109/TITS.2008.922979
    [17] Dudek M, Nasr I, Bozsik G, et al. System analysis of a phased-array radar applying adaptive beam-control for future automotive safety applications[J]. IEEE Transactions on Vehicular Technology, 2015, 64(1): 34–47. DOI: 10.1109/TVT.2014.2321175
    [18] Gambi E, Chiaraluce F, and Spinsante S. Chaos-based radars for automotive applications: Theoretical issues and numerical simulation[J]. IEEE Transactions on Vehicular Technology, 2008, 57(6): 3858–3863. DOI: 10.1109/TVT.2008.921632
    [19] Cheng P, Zhang F, Chen J M, et al. A distributed TDMA scheduling algorithm for target tracking in ultrasonic sensor networks[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9): 3836–3845. DOI: 10.1109/TIE.2012.2208439
    [20] Imana E Y, Yang T, and Reed J H. Addressing a neighboring-channel interference from high-powered radar[J]. IEEE Transactions on Vehicular Technology, 2016, 65(5): 2872–2882. DOI: 10.1109/TVT.2015.2442217
    [21] Richards M A. Fundamentals of Radar Signal Processing[M]. New York: McGraw-Hill, 2005.
    [22] Shechtman Y, Eldar Y C, Cohen O, et al. Phase retrieval with application to optical imaging: A contemporary overview[J]. IEEE Signal Processing Magazine, 2015, 32(3): 87–109. DOI: 10.1109/MSP.2014.2352673
  • 加载中
图(11)
计量
  • 文章访问数:  2930
  • HTML全文浏览量:  1128
  • PDF下载量:  347
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-12
  • 修回日期:  2018-04-03
  • 网络出版日期:  2018-06-28

目录

    /

    返回文章
    返回