双基星载HRWS-SAR系统方位向信号重构的矩阵求逆算法

林玉川 张剑云 武拥军 周青松

林玉川, 张剑云, 武拥军, 周青松. 双基星载HRWS-SAR系统方位向信号重构的矩阵求逆算法[J]. 雷达学报, 2017, 6(4): 388-396. doi: 10.12000/JR17060
引用本文: 林玉川, 张剑云, 武拥军, 周青松. 双基星载HRWS-SAR系统方位向信号重构的矩阵求逆算法[J]. 雷达学报, 2017, 6(4): 388-396. doi: 10.12000/JR17060
Lin Yuchuan, Zhang Jianyun, Wu Yongjun, Zhou Qingsong. Matrix Inversion Method for Azimuth Reconstruction in Bistatic Spaceborne High-Resolution Wide-Swath SAR System[J]. Journal of Radars, 2017, 6(4): 388-396. doi: 10.12000/JR17060
Citation: Lin Yuchuan, Zhang Jianyun, Wu Yongjun, Zhou Qingsong. Matrix Inversion Method for Azimuth Reconstruction in Bistatic Spaceborne High-Resolution Wide-Swath SAR System[J]. Journal of Radars, 2017, 6(4): 388-396. doi: 10.12000/JR17060

双基星载HRWS-SAR系统方位向信号重构的矩阵求逆算法

doi: 10.12000/JR17060
基金项目: 安徽省自然科学基金(1508085MF119)
详细信息
    作者简介:

    林玉川(1980–),男,博士生,工程师,主要研究方向为双基SAR成像技术。E-mail: maths123@mail.ustc.edu.cn

    张剑云(1963–),男,教授,博士生导师,主要研究方向为雷达及目标环境模拟、雷达信号处理、高速信号处理

    武拥军(1970–),男,讲师,硕士生导师,主要研究方向为天线技术与微波成像

    周青松(1982–),男,博士,讲师,主要研究方向为凸优化理论及雷达信号处理

    通讯作者:

    林玉川   maths123@mail.ustc.edu.cn

Matrix Inversion Method for Azimuth Reconstruction in Bistatic Spaceborne High-Resolution Wide-Swath SAR System

Funds: Anhui Province Natural Science Foundation (1508085MF119)
  • 摘要: 双基星载高分辨率宽测绘带SAR系统(HRWS-SAR)的方位向信号普遍为非均匀采样,重构其均匀采样信号或多普勒频谱是成像处理的关键步骤。该文将方位照射时间内时变的发射接收距离比近似为常数,利用双基系统与单基系统方位向通道间传递函数的等效关系,建立了一般双基构型星载HRWS-SAR系统的方位向信号模型,进而给出了方位向信号重构的矩阵求逆算法及重构性能指标信噪比缩放因子和方位模糊比的计算公式。该文对几种典型双基构型的星载HRWS-SAR系统进行方位向信号重构仿真,结果表明在非重叠采样条件下矩阵求逆算法能较好地重构出方位向信号的多普勒频谱。

     

  • 图  1  双基星载HRWS-SAR系统的双基构型

    Figure  1.  Bistatic configuration of bistatic spaceborne HRWS-SAR

    图  2  单基星载HRWS-SAR系统的方位向信号生成模型

    Figure  2.  Azimuth signal generating model in monostatic spaceborne HRWS-SAR

    图  3  照射时间Ta范围内的 $C\left( t \right)$ $\varepsilon \! \left( t \right)$ 变化曲线

    Figure  3.  $C\left( t \right)$ and $\varepsilon \! \left( t \right)$ variation curve in irradiation time Ta

    图  4  构型Ⅰ方位向信号重构前后的成像结果

    Figure  4.  Unreconstructed and reconstructed azimuth signal Doppler spectrum for bistatic configuration Ⅰ

    图  5  方位向信号重构后的成像结果

    Figure  5.  Imaging for reconstructed azimuth signal Doppler spectrum

    图  6  方位向信号重构性能曲线

    Figure  6.  Azimuth signal reconstruction performance curve

    表  1  双基星载HRWS-SAR系统的方位向系统参数

    Table  1.   Azimuth parameters in bistatic spaceborne HRWS-SAR

    参数 数值
    发射天线方位尺寸(m) 2.4
    接收通道方位尺寸(m) 2.4
    接收通道数目 5
    轨道高度(km) 600
    接收天线最短距离(km) 700
    方位向速度(m/s) 7600
    载波波长(cm) 3.1
    下载: 导出CSV

    表  2  双基星载HRWS-SAR系统的7种双基构型

    Table  2.   Seven configurations for bistatic spaceborne HRWS-SAR

    构型编号 tfd (s) L (km)
    0 0
    1 0
    10 0
    0 10
    0 100
    0 –10
    0 –100
    下载: 导出CSV

    表  3  C0及典型PRF值

    Table  3.   C0 and typical PRF

    构型编号 C0 PRFuni (kHz) PRFrep1 (kHz) PRFrep2 (kHz)
    1.0000 2.533 1.583 2.111
    1.0001 2.533 1.583 2.111
    1.0059 2.540 1.588 2.117
    0.9927 2.524 1.577 2.103
    0.9345 2.450 1.531 2.041
    1.0074 2.542 1.589 2.118
    1.0805 2.635 1.647 2.196
    下载: 导出CSV
  • [1] Zink M, Bachmann M, Brautigam B, et al. TanDEM-X: The new global DEM takes shape[J]. IEEE Geoscience and Remote Sensing Magazine, 2014, 2(2): 8–23. DOI: 10.1109/MGRS.2014.2318895
    [2] Bueso-Bello J L, Prats-Iraola P, Martone M, et al.. Performance evaluation of the TanDEM-X quad polarization acquisitions in the science phase[C]. Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, 2016: 627–632.
    [3] Moreira A, Krieger G, Hajnsek I, et al. Tandem-L: A highly innovative bistatic SAR mission for global observation of dynamic processes on the earth’s surface[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(2): 8–23. DOI: 10.1109/MGRS.2015.2437353
    [4] Huber S, Villano M, Younis M, et al.. Tandem-L: Design concepts for a next-generation spaceborne SAR system[C]. Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, 2016: 1–5.
    [5] 范强, 吕晓德, 张平, 等. 星载SAR DPCMAB技术的方位向非均匀采样研究[J]. 电子与信息学报, 2006, 28(1): 31–35

    Fan Qiang, Lü Xiao-de, Zhang Ping, et al. Study of nonuniform azimuth sampling of DPCMAB technique in spaceborne SAR[J]. Journal of Electronics&Information Technology, 2006, 28(1): 31–35
    [6] Currie A and Brown M A. Wide-swath SAR[J]. IEE Proceedings F-Radar and Signal Processing, 1992, 139(2): 122–135. DOI: 10.1049/ip-f-2.1992.0016
    [7] Yen J. On nonuniform sampling of bandwidth-limited signals[J]. IRE Transactions on Circuit Theory, 1956, 3(4): 251–257. DOI: 10.1109/TCT.1956.1086325
    [8] Gebert N, Krieger G, and Moreira A. Digital beamforming on receive: Techniques and optimization strategies for high-resolution wide-swath SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 564–592. DOI: 10.1109/TAES.2009.5089542
    [9] Krieger G, Gebert N, and Moreira A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260–264. DOI: 10.1109/LGRS.2004.832700
    [10] Cheng Pu, Wan Jian-wei, Xin Qin, et al. An improved azimuth reconstruction method for multichannel SAR using vandermonde matrix[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(1): 67–71. DOI: 10.1109/LGRS.2016.2626309
    [11] Liu Bao-chang and He Yi-jun. Improved DBF algorithm for multichannel high-resolution wide-swath SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 1209–1225. DOI: 10.1109/TGRS.2015.2476496
    [12] Liu Na, Wang R, Deng Yun-kai, et al. Modified multichannel reconstruction method of SAR with highly nonuniform spatial sampling[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(2): 617–627. DOI: 10.1109/JSTARS.2016.2630048
    [13] Wang Ming-jian, Yu Wei-dong, Wang R, et al. Improved azimuth multichannel SAR imaging for configurations with redundant measurements[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(8): 1610–1614. DOI: 10.1109/LGRS.2015.2415511
    [14] Cerutti-Maori D, Sikaneta I, Klare J, et al. MIMO SAR processing for multichannel high-resolution wide-swath radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5034–5055. DOI: 10.1109/TGRS.2013.2286520
    [15] Sikaneta I, Gierull C H, and Cerutti-Maori D. Optimum signal processing for multichannel SAR: With application to high-resolution wide-swath imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6095–6109. DOI: 10.1109/TGRS.2013.2294940
    [16] Sikaneta I, Cerutti-Maori D, Klare J, et al.. Comparison of multi-channel high-resolution wide-swath SAR processing methods[C]. Proceedings of 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2014, Quebec, 2014: 3834–3837. DOI: 10.1109/IGARSS.2014.6947320.
    [17] Zhao Shuo, Wang R, Deng Yun-kai, et al. Modifications on multichannel reconstruction algorithm for SAR processing based on periodic nonuniform sampling theory and nonuniform fast Fourier transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11): 4998–5006. DOI: 10.1109/JSTARS.2015.2421303
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  2821
  • HTML全文浏览量:  615
  • PDF下载量:  526
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-18
  • 修回日期:  2017-08-23
  • 网络出版日期:  2017-08-28

目录

    /

    返回文章
    返回