分布式星载SAR系统时间同步和波束同步误差分析

李航舰 王宇 邓云凯 王伟 张衡

李航舰, 王宇, 邓云凯, 王伟, 张衡. 分布式星载SAR系统时间同步和波束同步误差分析[J]. 雷达学报, 2018, 7(2): 244-253. doi: 10.12000/JR17028
引用本文: 李航舰, 王宇, 邓云凯, 王伟, 张衡. 分布式星载SAR系统时间同步和波束同步误差分析[J]. 雷达学报, 2018, 7(2): 244-253. doi: 10.12000/JR17028
Li Hangjian, Wang Robert, Deng Yunkai, Wang Wei, Zhang Heng. Analysis of Time and Beam Synchronization Errors for Distributed Spaceborne SAR System[J]. Journal of Radars, 2018, 7(2): 244-253. doi: 10.12000/JR17028
Citation: Li Hangjian, Wang Robert, Deng Yunkai, Wang Wei, Zhang Heng. Analysis of Time and Beam Synchronization Errors for Distributed Spaceborne SAR System[J]. Journal of Radars, 2018, 7(2): 244-253. doi: 10.12000/JR17028

分布式星载SAR系统时间同步和波束同步误差分析

DOI: 10.12000/JR17028
基金项目: 国家自然科学基金优秀青年基金(61422113),国家万人计划青年拔尖人才,中科院百人计划
详细信息
    作者简介:

    李航舰(1990–),男,河北人,中国科学院电子学研究所通信与信息系统专业硕士研究生,研究方向为星载SAR系统同步技术。E-mail: lihangjian14@mails.ucas.ac.cn

    王宇:王   宇(1980–),男,河南人,现为中国科学院电子学研究所研究员,博士生导师,研究方向为SAR系统设计与信号处理技术。E-mail: yuwang@mail.ie.ac.cn

    邓云凯(1962–),男,研究员,现为中国科学院电子学研究所研究员,博士生导师,研究方向为星载合成孔径雷达系统设计。E-mail: ykdeng@mail.ie.ac.cn

    王伟:王   伟(1985–),男,河北人,毕业于中国科学院电子学研究所,获得博士学位,现为中国科学院电子学研究所助理研究员,研究方向为新体制星载SAR系统设计和信号处理。E-mail: ww_nudt@sina.com

    张衡:张   衡(1990–),男,山东人,中国科学院电子学研究所通信与信息系统专业博士研究生,研究方向为双基信号处理技术。E-mail: caszhmail@163.com

    通讯作者:

    李航舰   lihangjian14@mails.ucas.ac.cn

Analysis of Time and Beam Synchronization Errors for Distributed Spaceborne SAR System

Funds: The National Natural Science Foundation of China (61422113), The National Ten Thousand Talent Program-Young Top Notch Talent Program, The Hundred Talents Program of the Chinese Academy of Sciences
  • 摘要: 三大同步是分布式星载SAR系统需要解决的关键问题之一。该文系统分析了时间同步和波束同步误差对分布式星载SAR系统的影响,时间同步部分首先推导了时间同步误差对成像的影响,其次基于时间同步误差模型和脉冲对传相位同步模型,分析时间同步和相位同步导致的相位误差之间的关系,波束同步部分基于星载双基SAR系统的不同姿态导引方式,分析波束指向误差和卫星姿态误差对合成天线方向图的影响,以及对多普勒去相干的影响,最后分析波束同步误差对距离向重叠幅宽的影响。仿真结果验证了本文理论分析的正确性,分析结果可以为分布式星载SAR的系统设计提供重要指导。

     

  • 图  1  卫星姿态对系统的影响

    Figure  1.  Impacts of yaw angle, pitch angle and roll angle

    图  2  仅辅星进行多普勒导引

    Figure  2.  The first attitude steering strategy

    图  3  主星辅星分别进行多普勒导引

    Figure  3.  The second attitude steering strategy

    图  4  顺轨基线对相干系数的影响

    Figure  4.  Contributions to correlation coefficient versus along-track baseline

    图  5  无误差的波束覆盖情况

    Figure  5.  No beam pointing error case

    图  6  有误差的波束覆盖情况

    Figure  6.  Beam pointing error exists case

    图  7  固定时间误差影响仿真

    Figure  7.  Constant time error simulations

    图  8  回波域相位补偿后的结果

    Figure  8.  Time error simulations after compensation in echo domain

    图  9  波束指向引起的合成天线方向图增益损失

    Figure  9.  Gain loss versus beam pointing accuracy

    图  10  波束指向引起的相干系数变化

    Figure  10.  Coherent coefficient versus beam pointing accuracy

    图  11  卫星姿态引起的合成天线方向图增益损失

    Figure  11.  Gain loss versus satellite attitude accuracy

    图  12  卫星姿态引起的合成天线方向图增益损失

    Figure  12.  Coherent coefficient versus satellite attitude accuracy

    图  13  波束指向和卫星姿态对天线增益的综合影响

    Figure  13.  Overall influence on antenna gain versus beam pointing accuracy and attitude accuracy

    图  14  波束指向和卫星姿态对相干系数的综合影响

    Figure  14.  Overall influence on coherent coefficient versus beam pointing accuracy and attitude accuracy

    图  15  波束指向对重叠幅宽的影响

    Figure  15.  Overlapping swath error versus beam pointing accuracy

    图  16  横滚角对重叠幅宽的影响

    Figure  16.  Overlapping swath error versus roll angle

    图  17  横滚角和波束指向对重叠幅宽的影响

    Figure  17.  Overlapping swath error versus roll angle and beam pointing error

    表  1  仿真参数表

    Table  1.   Simulation parameters

    参数 数值
    载频(GHz) 1.30
    卫星高度(km) 700
    方位向天线长度(m) 6
    脉冲宽度(μs) 80
    距离向带宽(MHz) 100
    PRF(Hz) 1600
    卫星有效速度(m/s) 7500
    距离向波束指向精度(°) 0.06
    方位向波束指向精度(°) 0.05
    姿态控制精度(°) 0.02
    顺轨基线(km) 3
    下载: 导出CSV

    表  2  波束同步误差造成的辅星图像信噪比损失(dB)

    Table  2.   Influence of beam synchronization error on SNR (dB)

    波束指向精度(°) 姿态控制精度(°)
    0.01 0.02
    0.01 0.021 0.025
    0.02 0.028 0.032
    0.03 0.036 0.039
    0.04 0.046 0.048
    0.05 0.055 0.057
    下载: 导出CSV

    表  3  波束同步误差对重叠幅宽的影响(m)

    Table  3.   Influence of beam synchronization error to overlapping area (m)

    波束指向精度(°) 姿态控制精度(°)
    0.01 0.02
    0.01 260 411
    0.02 411 520
    0.03 582 663
    0.04 759 823
    0.05 938 991
    0.06 1119 1164
    下载: 导出CSV
  • [1] Curlander J C and Mcdonough R N. Synthetic Aperture Radar: Systems and Signal Processing[M]. New York: Wiley, 1991, 2077: 3–7.
    [2] Krieger G, Hajnsek I, Papathanassiou K P, et al. Interferometric Synthetic Aperture Radar (SAR) missions employing formation flying[J]. Proceedings of the IEEE, 2010, 98(5): 816–843. DOI: 10.1109/JPROC.2009.2038948
    [3] Wang Wen-qin. GPS-based time & phase synchronization processing for distributed SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1040–1051. DOI: 10.1109/TAES.2009.5259181
    [4] Krieger G and Younis M. Impact of oscillator noise in bistatic and multistatic SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3): 424–428. DOI: 10.1109/LGRS.2006.874164
    [5] Rutman J. Characterization of phase and frequency instabilities in precision frequency sources: Fifteen years of progress[J]. Proceedings of the IEEE, 1978, 66(9): 1048–1075. DOI: 10.1109/PROC.1978.11080
    [6] Wang W Q, Cai J Y, and Yang Y W. Extracting phase noise of microwave and millimetre-wave signals by deconvolution[J]. IEE Proceedings-Science,Measurement and Technology, 2006, 153(1): 7–12. DOI: 10.1049/ip-smt:20050013
    [7] Krieger G, Moreira A, Fiedler H, et al. TanDEM-X: A satellite formation for high-resolution SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3317–3341. DOI: 10.1109/TGRS.2007.900693
    [8] Eineder M. Ocillator clock drift compensation in bistatic interferometric SAR[C]. Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 1449–1451.
    [9] Younis M, Metzig R, Krieger G, et al.. Performance prediction and verification for the synchronization link of TanDEM-X[C]. Proceedings of 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007: 5206–5209.
    [10] Younis M, Metzig R, and Krieger G. Performance prediction of a phase synchronization link for bistatic SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3): 429–433. DOI: 10.1109/LGRS.2006.874163
    [11] He Zhi-hua, Jin Guang-hu, Feng He, et al.. Phase synchronization method for distributed spaceborne fmcw SAR system[J]. Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium,Beijing,China, 2016: 1776–7379. DOI: 10.1109/IGARSS.2016.7730924
    [12] Marquez J, Mak K, Notter M, et al.. Design of passive non-cooperative spaceborne SAR payloads-challenges and strategies[C]. Proceedings of the 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 2016: 1138–1143.
    [13] Zhang Yong-sheng, Liang Dian-nong, and Dong Zhen. Analysis of time and frequency synchronization errors in spaceborne parasitic InSAR system[C]. Proceedings of 2006 IEEE International Conference on Geoscience and Remote Sensing Symposium, Dresden, Germany, 2006: 3047–3050.
    [14] Cherniakov M. Bistatic Radars: Emerging Technology[M]. New York: John Wiley & Sons, 2008.
    [15] Knedlik S, Loffeld O, and Gebhardt U. On position and attitude determination requirements for future bistatic SAR experiments[C]. Proceedings of 2006 IEEE International Conference on Geoscience and Remote Sensing Symposium, Denver, Colorado, USA, 2006: 1216–1219.
    [16] D’Errico M and Moccia A. Attitude and antenna pointing design of bistatic radar formations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 949–960. DOI: 10.1109/TAES.2003.1238748
    [17] Wang Wen-qin. Clock timing jitter analysis and compensation for bistatic synthetic aperture radar systems[J]. Fluctuation and Noise Letters, 2007, 7(3): L341–L350. DOI: 10.1142/S0219477507003982
    [18] 杨威, 李春升, 陈杰, 等. 时钟同步对星载多通道合成孔径雷达成像影响[J]. 电波科学学报, 2011, 26(4): 636–640. DOI: 10.13443/j.cjors.2011.04.012

    Yang Wei, Li Chun-sheng, Chen Jie, et al. Effects of time synchronization on image quality of spaceborne multi-channels SAR[J]. Chinese Journal of Radio Science, 2011, 26(4): 636–640. DOI: 10.13443/j.cjors.2011.04.012
    [19] 何志华. 分布式卫星SAR半实物仿真关键技术研究[D]. [博士论文], 国防科学技术大学, 2011.

    He Zhi-hua. Study on key techniques of distributed spaceborne SAR hardware-in-the-loop simulation[D]. [Ph.D. dissertation], National University of Defense Technology, 2011.
    [20] 眭明. 星机双基地SAR同步技术研究[D]. [硕士论文], 电子科技大学, 2014.

    Sui Ming. Research on synchronization for spaceborne/ airborne bistatic hybrid SAR[D]. [Master dissertation], University of Electronics Science and Technology of China, 2014.
    [21] 周鹏, 皮亦鸣, 戴永寿, 等. 星机双基地SAR的时间同步误差分析[J]. 电子学报, 2011, 39(6): 1467–1470

    Zhou Peng, Pi Yi-ming, Dai Yong-shou, et al. Analysis of time synchronization errors in spaceborne/airborne hybrid bistatic SAR[J]. Acta Electronica Sinica, 2011, 39(6): 1467–1470
    [22] Cumming I G and Wong F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Norwood, MA, USA: Artech House, 2005.
    [23] Wang Wen-qing. Inflight antenna pattern measurement for bistatic synthetic aperture radar systems[J]. IEEE Antennas and Wireless Propagation Letters, 2007, 6(11): 432–435. DOI: 10.1109/LAWP.2007.905013
    [24] Geudtner D, Zink M, Gierull C, et al. Interferometric alignment of the X-SAR antenna system on the space shuttle radar topography mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(5): 995–1006. DOI: 10.1109/TGRS.2002.1010887
    [25] 张永俊, 黄海风, 张永胜, 等. 最大相干波束同步方法及其性能验证研究[J]. 电子学报, 2012, 40(8): 1564–1571. DOI: 10.3969/j.issn.0372-2112.2012.08.011

    Zhang Yong-jun, Huang Hai-feng, Zhang Yong-sheng, et al. Maximum coherenc illumination synchronization method and its performance verification[J]. Acta Electronica Sinica, 2012, 40(8): 1564–1571. DOI: 10.3969/j.issn.0372-2112.2012.08.011
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  3084
  • HTML全文浏览量:  855
  • PDF下载量:  639
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-16
  • 修回日期:  2017-05-11
  • 网络出版日期:  2018-04-28

目录

    /

    返回文章
    返回