改进的基于特征子空间的SAR图像射频干扰抑制算法

周春晖 李飞 李宁 郑慧芳 王翔宇

周春晖, 李飞, 李宁, 郑慧芳, 王翔宇. 改进的基于特征子空间的SAR图像射频干扰抑制算法[J]. 雷达学报, 2018, 7(2): 235-243. doi: 10.12000/JR17025
引用本文: 周春晖, 李飞, 李宁, 郑慧芳, 王翔宇. 改进的基于特征子空间的SAR图像射频干扰抑制算法[J]. 雷达学报, 2018, 7(2): 235-243. doi: 10.12000/JR17025
Zhou Chunhui, Li Fei, Li Ning, Zheng Huifang, Wang Xiangyu. Modified Eigensubspace-based Approach for Radio-frequency Interference Suppression of SAR Image[J]. Journal of Radars, 2018, 7(2): 235-243. doi: 10.12000/JR17025
Citation: Zhou Chunhui, Li Fei, Li Ning, Zheng Huifang, Wang Xiangyu. Modified Eigensubspace-based Approach for Radio-frequency Interference Suppression of SAR Image[J]. Journal of Radars, 2018, 7(2): 235-243. doi: 10.12000/JR17025

改进的基于特征子空间的SAR图像射频干扰抑制算法

DOI: 10.12000/JR17025
基金项目: 国家自然科学基金优秀青年基金(61422113)
详细信息
    作者简介:

    周春晖(1992–),男,山东人,中国科学院电子学研究所硕士研究生,研究方向为合成孔径雷达成像、自聚焦技术、干扰抑制等。E-mail: zchabc88@126.com

    李飞:李   飞(1976–),男,四川人,现为中国科学院电子学研究所研究员,硕士生导师,研究方向为合成孔径雷达总体、合成孔径雷达总控技术研究、星载嵌入式系统软硬件开发等。E-mail: lifei@mail.ie.ac.cn

    李宁:李   宁(1987–),男,安徽人,毕业于中国科学院电子学研究所,获得博士学位,现为中国科学院电子学研究所助理研究员,研究方向为多模式SAR成像及应用技术研究等。E-mail: lining_nuaa@163.com

    王翔宇(1990–),男,天津人,中国科学院电子学研究所博士研究生,研究方向为多通道SAR成像等。E-mail: wangxiangyu13@mails.ucas.ac.cn

    通讯作者:

    周春晖   zchabc88@126.com

Modified Eigensubspace-based Approach for Radio-frequency Interference Suppression of SAR Image

Funds: The National Natural Science Foundation of China (61422113)
  • 摘要: 射频干扰(the Radio Frequency Interference, RFI)会对有用信号产生不利影响,进而严重影响成像质量。该文提出了一种改进的基于特征子空间的合成孔径雷达(Synthetic Aperture Radar, SAR)图像射频干扰抑制算法。相比传统算法,所提算法增加了专门用于射频干扰检测的预处理模块。在预处理阶段,分别在频域和时域对干扰所在的数据区域进行检测。在后处理阶段,只对检测到干扰的数据区域进行基于特征子空间的干扰抑制。相比传统算法,所提算法在保持图像细部结构方面效果更好,且避免了时域逐脉冲干扰抑制带来的巨大运算量,运算效率大幅提高。

     

  • 图  1  由工作在L波段的机载SAR系统获得实测数据的距离频域方位时域幅度图

    Figure  1.  The range direction spectrum of the measured data obtained by an airborne SAR system working at L-band

    图  2  距离向频谱图

    Figure  2.  Average range direction spectrum of Fig. 1

    图  3  改进的特征子空间法的主要步骤流程图

    Figure  3.  Main flowchart of main steps of proposed approach

    图  4  利用传统的特征子空间法处理得到的点目标仿真实验结果

    Figure  4.  Imaging results of point target via traditional eigensubspace-based approach

    图  5  利用改进的的特征子空间法处理得到的点目标仿真实验结果

    Figure  5.  Imaging results of point target via modified eigensubspace-based approach

    图  6  包含RFI的完整原始SAR图像

    Figure  6.  Original full SAR image containing RFI

    图  7  图6中的区域“A”的对比实验结果

    Figure  7.  Results of contrast experiment of area “A” in Fig. 6

    图  8  图6中的区域“B”的对比实验结果

    Figure  8.  The results of the contrast experiment of the area “B” in Fig. 6

    表  1  仿真实验的主要系统参数

    Table  1.   Main system parameters for experiment

    参数 数值
    雷达工作频率(GHz) 1.3
    景中心斜距(km) 20
    雷达有效速度(m/s) 150
    波束斜视角 正侧视
    发射脉冲时宽(μs) 2.5
    距离向带宽(MHz) 50
    距离向采样频率(MHz) 70
    天线长度(孔径)(m) 3.75
    方位向采样率(PRF)(Hz) 112
    下载: 导出CSV

    表  2  距离向/方位向关键指标的仿真实验结果(dB)

    Table  2.   Simulation results of key indicators in range /azimuth direction (dB)

    方法 PSLR(峰值旁瓣比) ISLR(积分旁瓣比)
    传统方法 –11.3740/–13.2009 –8.2197/–10.0441
    改进方法 –12.9144/–13.2255 –9.9132/–10.1378
    下载: 导出CSV

    表  3  机载实验系统的主要系统参数

    Table  3.   Main system parameters for experiment

    参数 数值
    雷达工作频率(GHz) 1.3
    景中心斜距(km) 15.883
    雷达有效速度(m/s) 130.099
    波束斜视角 正侧视
    发射脉冲时宽(μs) 10.4
    距离向带宽(MHz) 210
    距离向采样频率(MHz) 266.667
    天线长度(孔径)(m) 1.36
    方位向采样率(PRF)(Hz) 899.5393
    下载: 导出CSV
  • [1] Goriachkin O V. Azimuth resolution of spaceborne P, VHF-band SAR[J].IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 251–254. DOI: 10.1109/LGRS.2004.833777
    [2] 邓云凯, 赵凤军, 王宇. 星载SAR技术的发展趋势及应用浅析[J]. 雷达学报, 2012, 1(1): 1–10. DOI: 10.3724/SP.J.1300.2012.20015

    Deng Yun-kai, Zhao Feng-jun, and Wang Yu. Brief analysis on the development and application of spaceborne SAR[J]. Journal of Radars, 2012, 1(1): 1–10. DOI: 10.3724/SP.J.1300.2012.20015
    [3] Meyer F J, Nicoll J B, and Doulgeris A P. Correction and characterization of radio frequency interference signatures in L-band synthetic aperture radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(10): 4961–24972. DOI: 10.1109/TGRS.2013.2252469
    [4] Nguyen L and Soumekh M. Suppression of radio frequency inteference (RFI) for synchronous impulse reconstruction ultra-wideband radar[C]. Proceedings of SPIE 5808, Algorithms for Synthetic Aperture Radar Imagery XII, Orlando, Florida, USA, 2005: 178–184.
    [5] Ojowu Jr O O and Li Jian. RFI suppression for synchronous impulse reconstruction UWB radar using RELAX[J]. International Journal of Remote Sensing Applications, 2013, 3(1): 33–46.
    [6] Lord R T and Inggs M R. Efficient RFI suppression in SAR using LMS adaptive filter integrated with range/Doppler algorithm[J]. Electronics Letters, 1999, 35(8): 629–630. DOI: 10.1049/el:19990437
    [7] Luo X, Ulander L M H, Askne J, et al. RFI suppression in ultra-wideband SAR systems using LMS filters in frequency domain[J]. Electronics Letters, 2001, 37(4): 241–243. DOI: 10.1049/el:20010153
    [8] Ulug B. An Algorithm for Sinusoidal Interference Reduction Using Iterative Maximum Likelihood Estimation Techniques[M]. 1992.
    [9] Buckreuss S. Filtering interferences from p-band SAR data[C]. Proceedings of EUSAR’98 Conference, Frie- drichshafen, Germany, 1998.
    [10] Ruan Hang, Ye Wei, Yin Can-bin, et al.. Wide band noise interference suppression for SAR with dechirping and eigensubspace filtering[C]. Proceedings of 2010 International Conference on Intelligent Control and Information Processing, Dalian, China, 2010: 39–42.
    [11] Feng Jin, Zheng Hui-fang, Deng Yun-kai, et al. Application of subband spectral cancellation for SAR narrow-band interference suppression[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 190–193. DOI: 10.1109/LGRS.2011.2163150
    [12] Zhou Feng, Tao Ming-liang, Bai Xue-ru, et al. Narrow-band interference suppression for SAR based on independent component analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(10): 4952–4960. DOI: 10.1109/TGRS.2013.2244605
    [13] Zhou Feng and Tao Ming-liang. Research on methods for narrow-band interference suppression in synthetic aperture radar data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3476–3485. DOI: 10.1109/JSTARS.2015.2431916
    [14] 郑慧芳, 杨淋, 冯锦. SAR窄带干扰抑制的子带子空间滤波技术研究[J]. 电子与信息学报, 2013, 35(12): 2836–2842. DOI: 10.3724/SP.J.1146.2013.00201

    Zheng Hui-fang, Yang Lin, and Feng Jin. Research on the subband subspace filtering for narrow band interference suppression in SAR[J]. Journal of Electronics&Information Technology, 2013, 35(12): 2836–2842. DOI: 10.3724/SP.J.1146.2013.00201
    [15] Smola A J and Schölkopf B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3): 199–222. DOI: 10.1023/B:STCO.0000035301.49549.88
    [16] Huang Guang-bin, Zhou Hong-ming, Ding Xiao-jian, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part B(Cybernetics) , 2012, 42(2): 513–529. DOI: 10.1109/TSMCB.2011.2168604
    [17] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 128–139.

    Zhou Zhi-hua. Machine Learning[M]. Beijing: Tsinghua University Press, 2016: 128–139.
    [18] Zhou Feng, Wu Ren-biao, Xing Meng-dao, et al. Eigensubspace-based filtering with application in narrow-band interference suppression for SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 75–79. DOI: 10.1109/LGRS.2006.887033
    [19] Li Ning, Wang R, Deng Yun-kai, et al. Autofocus correction of residual RCM for VHR SAR sensors with light-small aircraft[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 441–452. DOI: 10.1109/TGRS.2016.2608423
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  3362
  • HTML全文浏览量:  683
  • PDF下载量:  435
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-14
  • 修回日期:  2017-05-11
  • 网络出版日期:  2018-04-28

目录

    /

    返回文章
    返回