基于改进方位相位编码的全极化SAR距离模糊抑制方法

祝晓静 李飞 王宇 王伟 孙翔

祝晓静, 李飞, 王宇, 王伟, 孙翔. 基于改进方位相位编码的全极化SAR距离模糊抑制方法[J]. 雷达学报, 2017, 6(4): 420-431. doi: 10.12000/JR17015
引用本文: 祝晓静, 李飞, 王宇, 王伟, 孙翔. 基于改进方位相位编码的全极化SAR距离模糊抑制方法[J]. 雷达学报, 2017, 6(4): 420-431. doi: 10.12000/JR17015
Zhu Xiaojing, Li Fei, Wang Robert, Wang Wei, Sun Xiang. Range Ambiguity Suppression Approach for Quad-pol SAR Systems Based on Modified Azimuth Phase Coding[J]. Journal of Radars, 2017, 6(4): 420-431. doi: 10.12000/JR17015
Citation: Zhu Xiaojing, Li Fei, Wang Robert, Wang Wei, Sun Xiang. Range Ambiguity Suppression Approach for Quad-pol SAR Systems Based on Modified Azimuth Phase Coding[J]. Journal of Radars, 2017, 6(4): 420-431. doi: 10.12000/JR17015

基于改进方位相位编码的全极化SAR距离模糊抑制方法

doi: 10.12000/JR17015
基金项目: 国家自然科学基金优秀青年基金(61422113),国家万人计划-青年拔尖人才,中科院百人计划,L波段差分干涉SAR项目
详细信息
    作者简介:

    王伟:王   伟(1985–),男,河北人,毕业于中国科学院电子学研究所,获得博士学位,现为中国科学院电子学研究所助理研究员,研究方向为新体制星载SAR系统设计和信号处理。E-mail: ww_nudt@sina.com

    通讯作者:

    王伟   ww_nudt@sina.com

Range Ambiguity Suppression Approach for Quad-pol SAR Systems Based on Modified Azimuth Phase Coding

Funds: The National Natural Science Foundation of China (61422113), The National Ten Thousand Talent Program-Young Top Notch Talent Program, The Hundred Talents Program of the Chinese Academy of Sciences, The TWIn-L SAR (TerrainWide-Swath Interferometry L-band SAR) Program
  • 摘要: 传统全极化SAR系统交叉极化通道由于受到强同极化距离模糊信号的干扰,使得交叉极化通道的距离模糊性能急剧下降,这严重限制了全极化SAR系统的测绘带宽。该文首先介绍一种扩展的极化发射体制—混合极化模式,该模式在改善交叉极化距离模糊性能的同时恶化同极化距离模糊性能。因此,为了更好地提高全极化SAR系统的距离模糊性能,该文提出一种改进的方位相位编码方法(MAPC)。该方法通过对系统发射脉冲进行调制解调,能够将全极化SAR系统的距离模糊能量转移到方位向,然后利用方位向维纳滤波器滤除距离模糊能量。该文的实验结果表明MAPC技术能够有效地去除全极化SAR系统的距离模糊能量,并扩展系统的无模糊测绘带宽。

     

  • 图  1  传统全极化SAR系统工作模式

    Figure  1.  Transmission mode of conventional quad-pol SAR

    图  2  星载SAR系统距离向几何关系示意图

    Figure  2.  Illustration of imaging geometry for spaceborne SAR

    图  3  混合极化SAR系统工作模式

    Figure  3.  Transmission mode of hybrid-pol SAR

    图  4  APC方法M=2时方位向多普勒频谱示意图

    Figure  4.  Doppler spectrum after APC modulation and demodulation (M=2)

    图  5  全极化SAR系统中MAPC的发射调制方式

    Figure  5.  Modified APC modulation based on quad-pol SAR systems

    图  6  全极化SAR系统不同波位的PRF值

    Figure  6.  Parameterof PRF for quad-pol SAR system

    图  7  L波段不同工作模式下同极化通道与交叉极化通道的RASR曲线

    Figure  7.  RASR of cross-pol and co-pol channels for L-band SAR systems based on different transmission mode

    图  8  矩形滤波与维纳滤波时信号与模糊能量损失比

    Figure  8.  Compares filtering performance of rectangular filter and azimuth Wiener filter

    图  9  MAPC方法对同极化通道与交叉极化通道RASR影响

    Figure  9.  Compares RASR of HH and HV-pol channel by using MAPC technique based on rectangular filter/azimuth Wiener filter

    表  1  L波段全极化SAR系统参数

    Table  1.   Parameters for system examples

    参数 数值
    发射信号载频(GHz) 1.26
    发射脉冲宽度(us) 70
    平台高度(km) 607
    系统多普勒带宽(Hz) 1235.9
    发射信号带宽(MHz) 140
    俯仰角(°) 35
    平台飞行速度(m/s) 7500
    天线高度(m) 2.9
    下载: 导出CSV
  • [1] Raney R K, Freeman A, and Jordan R L. Improved range ambiguity performance in quad-pol SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 349–356. DOI: 10.1109/TGRS.2011.2121075
    [2] 杨汝良, 戴博伟, 李海英. 极化合成孔径雷达极化层次和系统工作方式[J]. 雷达学报, 2016, 5(2): 132–142

    Yang Ru-liang, Dai Bo-wei, and Li Hai-ying. Polarization hierarchy and system operating architecture for polarimetric Synthetic Aperture Radar[J]. Journal of Radars, 2016, 5(2): 132–142
    [3] Mittermayer J and Martínez J M. Analysis of range ambiguity suppression in SAR by up and down chirp modulation for point and distributed targets[C]. Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003, 6: 4077–4079.
    [4] Dall J and Kusk A. Azimuth phase coding for range ambiguity suppression in SAR[C]. Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 2004, 3: 1734–1737.
    [5] Bordoni F, Younis M, and Krieger G. Ambiguity suppression by azimuth phase coding in multichannel SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 617–629. DOI: 10.1109/TGRS.2011.2161672
    [6] Yang Jun, Sun Guang-cai, Wu Yu-feng, et al.. Range ambiguity suppression by azimuth phase coding in multichannel SAR systems[C]. Proceedings of IET International Radar Conference 2013, Xi'an, China, 2013: 1–5.
    [7] Gebert N, Krieger G, and Moreira A. Digital beamforming on receive: Techniques and optimization strategies for high-resolution wide-swath SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 564–592. DOI: 10.1109/TAES.2009.5089542
    [8] Krieger G, Gebert N, and Moreira A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 31–46. DOI: 10.1109/TGRS.2007.905974
    [9] Huber S, Younis M, Patyuchenko A, et al.. Digital beam forming techniques for spaceborne reflector SAR systems[C]. Proceedings of the 2010 8th European Conference on Synthetic Aperture Radar (EUSAR), Aachen, Germany, 2010: 1–4.
    [10] Di Martino G, Iodice A, Riccio D, et al. Filtering of azimuth ambiguity in stripmap synthetic aperture radar images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(9): 3967–3978. DOI: 10.1109/JSTARS.2014.2320155
    [11] Guarnieri A M. Adaptive removal of azimuth ambiguities in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 625–633. DOI: 10.1109/TGRS.2004.842476
    [12] 洪文, 杨士林, 李洋, 等. 分布式目标的极化SAR距离模糊计算方法研究[J]. 电子与信息学报, 2015, 37(6): 1437–1442 doi: 10.11999/JEIT141234

    Hong Wen, Yang Shi-lin, Li Yang, et al. Study on polarimetric SAR range ambiguity computation for distributed targets[J]. Journal of Electronics&Information Technology, 2015, 37(6): 1437–1442. DOI: 10.11999/JEIT141234
    [13] Li P K and Johnson W T K. Ambiguities in spacebornene synthetic aperture radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(3): 389–397. DOI: 10.1109/TAES.1983.309319
    [14] Callaghan G D and Longstaff I D. Wide-swath space-borne SAR and range ambiguity[C]. Proceedings of Radar 97 (Conf. Publ. No. 449), Edinburgh, UK, 1997: 248–252.
    [15] Cordey R. Range ambiguities for a polarimetric spaceborne SAR[C]. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Houston, TX, USA, 1992: 637–639.
    [16] Raney R K. Hybrid-polarity SAR architecture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3397–3404. DOI: 10.1109/TGRS.2007.895883
    [17] Raney R K, Spudis P D, Bussey B, et al. The lunar mini-RF radars: Hybrid polarimetric architecture and initial results[J]. Proceedings of the IEEE, 2011, 99(5): 808–823. DOI: 10.1109/JPROC.2010.2084970
    [18] Raney R K. A ‘free’ 3-dB cross-polarized SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(5): 700–702. DOI: 10.1109/36.7698
    [19] 郭磊, 王宇, 邓云凯, 等. 基于方位向相位编码技术的方位向多通道SAR距离模糊抑制方法[J]. 电子与信息学报, 2015, 37(3): 601–606 doi: 10.11999/JEIT140707

    Guo Lei, Wang Yu, Deng Yun-kai, et al. Range ambiguity suppression for multi-channel SAR system using azimuth phase coding technique[J]. Journal of Electronics&Information Technology, 2015, 37(3): 601–606. DOI: 10.11999/JEIT140707
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  3013
  • HTML全文浏览量:  589
  • PDF下载量:  429
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-14
  • 修回日期:  2017-05-14
  • 网络出版日期:  2017-08-28

目录

    /

    返回文章
    返回