Range Ambiguity Suppression Approach for Quad-pol SAR Systems Based on Modified Azimuth Phase Coding
-
摘要: 传统全极化SAR系统交叉极化通道由于受到强同极化距离模糊信号的干扰,使得交叉极化通道的距离模糊性能急剧下降,这严重限制了全极化SAR系统的测绘带宽。该文首先介绍一种扩展的极化发射体制—混合极化模式,该模式在改善交叉极化距离模糊性能的同时恶化同极化距离模糊性能。因此,为了更好地提高全极化SAR系统的距离模糊性能,该文提出一种改进的方位相位编码方法(MAPC)。该方法通过对系统发射脉冲进行调制解调,能够将全极化SAR系统的距离模糊能量转移到方位向,然后利用方位向维纳滤波器滤除距离模糊能量。该文的实验结果表明MAPC技术能够有效地去除全极化SAR系统的距离模糊能量,并扩展系统的无模糊测绘带宽。Abstract: For conventional quadrature-polarimetric (quad-pol) Synthetic Aperture Radar (SAR) systems, as cross-polarized (cross-pol) channels are influenced by the strong co-polarized (co-pol) range ambiguous returns, the range ambiguity levels of cross-polchannels are markedly reduced, which severely restricts the unambiguous swaths. A novel transmission scheme called a hybrid-polarimetric (hybrid-pol) mode is introduced to enhance the range ambiguity levels of cross-pol channels. This scheme improves the performance of cross-pol channels with regards to range ambiguity but deteriorates that of co-pol channels. Therefore, to further enhance the range ambiguity levels of quad-pol SAR systems, the Modified Azimuth Phase Coding (MAPC) technique based on hybrid-pol SAR systems is proposed in this study. By taking advantage of the MAPC modulation/demodulation, the power of range ambiguities is transferred to the azimuth that is filtered by an optimized Wiener filter in the Doppler domain. The simulation results validate that the MAPC technique can markedly eliminate the range ambiguity of quad-pol SAR systems and extend the unambiguous swaths.
-
表 1 L波段全极化SAR系统参数
Table 1. Parameters for system examples
参数 数值 发射信号载频(GHz) 1.26 发射脉冲宽度(us) 70 平台高度(km) 607 系统多普勒带宽(Hz) 1235.9 发射信号带宽(MHz) 140 俯仰角(°) 35 平台飞行速度(m/s) 7500 天线高度(m) 2.9 -
[1] Raney R K, Freeman A, and Jordan R L. Improved range ambiguity performance in quad-pol SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 349–356. DOI: 10.1109/TGRS.2011.2121075 [2] 杨汝良, 戴博伟, 李海英. 极化合成孔径雷达极化层次和系统工作方式[J]. 雷达学报, 2016, 5(2): 132–142Yang Ru-liang, Dai Bo-wei, and Li Hai-ying. Polarization hierarchy and system operating architecture for polarimetric Synthetic Aperture Radar[J]. Journal of Radars, 2016, 5(2): 132–142 [3] Mittermayer J and Martínez J M. Analysis of range ambiguity suppression in SAR by up and down chirp modulation for point and distributed targets[C]. Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003, 6: 4077–4079. [4] Dall J and Kusk A. Azimuth phase coding for range ambiguity suppression in SAR[C]. Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 2004, 3: 1734–1737. [5] Bordoni F, Younis M, and Krieger G. Ambiguity suppression by azimuth phase coding in multichannel SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 617–629. DOI: 10.1109/TGRS.2011.2161672 [6] Yang Jun, Sun Guang-cai, Wu Yu-feng, et al.. Range ambiguity suppression by azimuth phase coding in multichannel SAR systems[C]. Proceedings of IET International Radar Conference 2013, Xi'an, China, 2013: 1–5. [7] Gebert N, Krieger G, and Moreira A. Digital beamforming on receive: Techniques and optimization strategies for high-resolution wide-swath SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 564–592. DOI: 10.1109/TAES.2009.5089542 [8] Krieger G, Gebert N, and Moreira A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 31–46. DOI: 10.1109/TGRS.2007.905974 [9] Huber S, Younis M, Patyuchenko A, et al.. Digital beam forming techniques for spaceborne reflector SAR systems[C]. Proceedings of the 2010 8th European Conference on Synthetic Aperture Radar (EUSAR), Aachen, Germany, 2010: 1–4. [10] Di Martino G, Iodice A, Riccio D, et al. Filtering of azimuth ambiguity in stripmap synthetic aperture radar images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(9): 3967–3978. DOI: 10.1109/JSTARS.2014.2320155 [11] Guarnieri A M. Adaptive removal of azimuth ambiguities in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 625–633. DOI: 10.1109/TGRS.2004.842476 [12] 洪文, 杨士林, 李洋, 等. 分布式目标的极化SAR距离模糊计算方法研究[J]. 电子与信息学报, 2015, 37(6): 1437–1442 doi: 10.11999/JEIT141234Hong Wen, Yang Shi-lin, Li Yang, et al. Study on polarimetric SAR range ambiguity computation for distributed targets[J]. Journal of Electronics&Information Technology, 2015, 37(6): 1437–1442. DOI: 10.11999/JEIT141234 [13] Li P K and Johnson W T K. Ambiguities in spacebornene synthetic aperture radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(3): 389–397. DOI: 10.1109/TAES.1983.309319 [14] Callaghan G D and Longstaff I D. Wide-swath space-borne SAR and range ambiguity[C]. Proceedings of Radar 97 (Conf. Publ. No. 449), Edinburgh, UK, 1997: 248–252. [15] Cordey R. Range ambiguities for a polarimetric spaceborne SAR[C]. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Houston, TX, USA, 1992: 637–639. [16] Raney R K. Hybrid-polarity SAR architecture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3397–3404. DOI: 10.1109/TGRS.2007.895883 [17] Raney R K, Spudis P D, Bussey B, et al. The lunar mini-RF radars: Hybrid polarimetric architecture and initial results[J]. Proceedings of the IEEE, 2011, 99(5): 808–823. DOI: 10.1109/JPROC.2010.2084970 [18] Raney R K. A ‘free’ 3-dB cross-polarized SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(5): 700–702. DOI: 10.1109/36.7698 [19] 郭磊, 王宇, 邓云凯, 等. 基于方位向相位编码技术的方位向多通道SAR距离模糊抑制方法[J]. 电子与信息学报, 2015, 37(3): 601–606 doi: 10.11999/JEIT140707Guo Lei, Wang Yu, Deng Yun-kai, et al. Range ambiguity suppression for multi-channel SAR system using azimuth phase coding technique[J]. Journal of Electronics&Information Technology, 2015, 37(3): 601–606. DOI: 10.11999/JEIT140707