高分辨率星载SAR起伏运动目标精细聚焦与参数估计方法

温雪娇 仇晓兰 尤红建 卢晓军

温雪娇, 仇晓兰, 尤红建, 卢晓军. 高分辨率星载SAR起伏运动目标精细聚焦与参数估计方法[J]. 雷达学报, 2017, 6(2): 213-220. doi: 10.12000/JR17005
引用本文: 温雪娇, 仇晓兰, 尤红建, 卢晓军. 高分辨率星载SAR起伏运动目标精细聚焦与参数估计方法[J]. 雷达学报, 2017, 6(2): 213-220. doi: 10.12000/JR17005
Wen Xuejiao, Qiu Xiaolan, You Hongjian, Lu Xiaojun. Focusing and Parameter Estimation of Fluctuating Targets in High Resolution Spaceborne SAR[J]. Journal of Radars, 2017, 6(2): 213-220. doi: 10.12000/JR17005
Citation: Wen Xuejiao, Qiu Xiaolan, You Hongjian, Lu Xiaojun. Focusing and Parameter Estimation of Fluctuating Targets in High Resolution Spaceborne SAR[J]. Journal of Radars, 2017, 6(2): 213-220. doi: 10.12000/JR17005

高分辨率星载SAR起伏运动目标精细聚焦与参数估计方法

DOI: 10.12000/JR17005
基金项目: 国家自然科学基金(61331017),国家高分重大专项(30-Y20A12-9004-15/16, 41-Y20A13-9001-15/16)
详细信息
    作者简介:

    温雪娇(1992–),女,吉林长春人,中国科学院电子学研究所在读硕士研究生,主要研究领域为高分辨率星载SAR成像技术、复杂运动目标精细处理技术。E-mail: 136037701@qq.comE-mail: 136037701@qq.com

    仇晓兰(1982–),江苏苏州人,女,中国科学院电子学研究所副研究员,研究方向为SAR成像技术、双基地SAR技术。E-mail: xlqiu@mail.ie.ac.cn

    尤红建(1969–),江苏南通人,男,中国科学院电子学研究所研究员,研究方向为遥感图像处理技术。E-mail: hjyou@mail.ie.ac.cn

    卢晓军,江苏泰州人,北京理工大学博士后,中国国际工程咨询公司高级工程师,专业方向为智能控制、信号处理。E-mail: lu8new@163.com

    通讯作者:

    温雪娇   136037701@qq.com

  • 中图分类号: TN957.52

Focusing and Parameter Estimation of Fluctuating Targets in High Resolution Spaceborne SAR

Funds: The National Natural Science Foundation of China (61331017), The Key Standard Technologies of National High Resolution Special (30-Y20A12-9004-15/16, 41-Y20A13-9001-15/16)
  • 摘要: 高分辨率星载SAR图像中目标的复杂运动将引起不可忽视的散焦现象,影响目标识别和解译。该文对高分辨率星载SAR中目标起伏运动引入的误差进行了定量化分析,并仿真了其在SAR图像中的成像特点,提出了一种基于星载复图像数据进行运动误差补偿和精细聚焦处理的方法,同时估计得到目标的运动参数和海浪信息。仿真实验和TerraSAR-X港口区域实际数据实验验证了该方法的有效性和正确性。

     

  • 图  1  星载起伏运动点目标成像几何

    Figure  1.  Satellite-Earth geometry for fluctuating target

    图  2  海面二次散射示意图

    Figure  2.  Double scattering of sea surface

    图  3  运动目标精细聚焦流程图

    Figure  3.  flow chart for fine focusing of moving target

    图  4  起伏目标单次散射仿真结果

    Figure  4.  Simulation results of fluctuating target single scattering

    图  5  海面起伏二次散射仿真结果

    Figure  5.  Simulation results of double scattering of sea surface

    图  6  散焦结果深采样后方位向波形

    Figure  6.  Azimuth responses for focusing results after deep sampling

    图  7  起伏运动点目标单次散射精细聚焦结果

    Figure  7.  Fine focusing result for single scattering of fluctuating target

    图  8  海面起伏点目标二次散射精细聚焦结果

    Figure  8.  Fine focusing result for double scattering of sea surface

    图  9  相位补偿曲线

    Figure  9.  Compensating phase curves

    图  10  TerraSAR-X旅顺海岛图像

    Figure  10.  Lushun island image from TerraSAR-X

    图  11  图10(a)中某一亮线分析与处理结果

    Figure  11.  Analysis and processing results for certain light line inFig. 10(a)

    图  12  TerraSAR-X旅顺码头数据分析与处理结果

    Figure  12.  Analysis and processing results for Lushun port from TerraSAR-X

    表  1  雷达系统仿真参数

    Table  1.   Radar system simulation parameters

    参数 数值
    l 0.03112 m
    带宽 650 MHz
    采样率 750 MHz
    场景中心最短斜距 755.651 km
    合成孔径时间 4.1 s
    PRF 6800
    下视角 –30.849°
    入射角 –34.34°
    距离向分辨率 0.2 m
    方位向分辨率 0.4 m
    下载: 导出CSV

    表  2  参数估计结果

    Table  2.   Estimating results

    参数估计及误差 起伏运动单次散射 海面起伏二次散射
    Ae 0.106 m 0.103 m
    Te 3.999 s 4.012 s
    $\left| {\frac{{A_{\rm e} - A}}{A}} \right|$ 6% 3%
    $\left| {\frac{{T_{\rm e} - T_{\rm v}}}{{T_{\rm v}}}} \right|$ 0.025% 0.3%
    下载: 导出CSV

    表  3  TerraSAR-X旅顺岛参数表

    Table  3.   Parameters for TerraSAR-X

    雷达参数 数值 雷达参数 数值
    l 0.03112 m PRF 42300
    带宽 300 MHz 下视角 38.799°
    采样率 329.658 MHz 入射角 41.355°
    景中心最短斜距 613.981 km 距离向分辨率 0.5 m
    合成孔径时间 5.39 s 方位向分辨率 0.25 m
    下载: 导出CSV
  • [1] Li X, Deng B, Qin Y, et al. The influence of target micromotion on SAR and GMTI[J].IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(7): 2738–2751. doi: 10.1109/TGRS.2011.2104965
    [2] Wei S and Wang H. The improvement of the conventional GMTI method with single-channel SAR[C]. 2004 IEEE Geoscience and Remote Sensing Symposium, Anchorage, Alaska, USA, Sept 2004: 2626–2628.
    [3] Bamler R. Doppler frequency estimation and the Cramer-Rao bound[J].IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(3): 385–390. doi: 10.1109/36.79429
    [4] Li G, Xia X, Xu J, et al. A velocity estimation algorithm of moving targets using single antenna SAR[J].IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1052–1062. doi: 10.1109/TAES.2009.5259182
    [5] Martorella M, Berizzi F, Pastina D, et al. Spaceborne radar imaging of maritime moving targets with the Cosmo-SkyMed SAR system[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(7): 2797–2810. doi: 10.1109/JSTARS.2014.2321708
    [6] Noviello C, Fornara G, and Martorella M. Focused SAR image formation of moving targets based on Doppler parameter estimation[J].IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 3460–3470. doi: 10.1109/TGRS.2014.2377293
    [7] Thayaparan T, Abrol S, Riseborough E, et al. Analysis of radar micro-Doppler signatures from experimental helicopter and human data[J].IET Radar, Sonar and Navigation, 2007, 1(4): 289–299. doi: 10.1049/iet-rsn:20060103
    [8] Chen V C and Lipps R. ISAR imaging of small craft with roll, pitch and yaw analysis[C]. 2000 IEEE International Radar Conference, Alexandria, VA, USA, May 2000: 493–498.
    [9] Noviello C, Fornaro G, Martorella M, et al. ISAR add-on for focusing moving targets in very high resolution spaceborne SAR data[C]. 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec, Canada, July 2014: 926–929.
    [10] Zhu D Y, Wang L, Tao Q N, et al. ISAR range alignment by minimizing the entropy of the average range profile[C]. 2006 IEEE Conference on Radar, Verona, New York, USA, April 2006: 813–818.
    [11] Li X, Liu G, and Ni J. Autofocusing of ISAR image based on entropy minimization[J].IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4): 1240–1252. doi: 10.1109/7.805442
    [12] Wang J, Liu X, and Zhou Z. Minimum entropy phase adjustment for ISAR[J].IEE Proceedings-Radar, Sonar and Navigation, 2004, 151(4): 203–209. doi: 10.1049/ip-rsn:20040692
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  3952
  • HTML全文浏览量:  696
  • PDF下载量:  921
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-13
  • 修回日期:  2017-02-20
  • 网络出版日期:  2017-04-28

目录

    /

    返回文章
    返回