Unsupervised Classification for Polarimetric Synthetic Aperture Radar Images Based on Wishart Mixture Models
-
摘要: 极化合成孔径雷达图像非监督分类是极化SAR图像自动化解译的重要步骤,但是在非监督分类的过程中如何确定样本类数仍然是十分具有挑战性的问题。由于像素之间具有空间相关性,因此和基于像素的分类方法相比,基于区域的分类方法能得到更加鲁棒的结果。为此,该文提出了一种基于混合Wishart模型和密度峰值聚类的区域级极化SAR图像非监督分类方法。该方法首先使用SLIC算法对极化SAR图像进行过分割,生成多个超像素区域;然后采用混合Wishart模型对超像素区域进行建模,并且利用Cauchy-Schwarz散度来衡量不同超像素区域之间的距离;最后通过密度峰值快速搜索聚类算法得到PolSAR图像的非监督分类结果。在不同极化SAR图像上的实验结果表明了该文方法的有效性。
-
关键词:
- 极化SAR图像 /
- 非监督分类 /
- 混合Wishart模型 /
- 密度峰值
Abstract: Unsupervised classification is a significant step inthe automated interpretation of Polarimetric Synthetic Aperture Radar (PolSAR) images. However, determining the number of clusters in this process is still a challenging problem. To this end, we propose a region-based unsupervised classification method for PolSAR images by introducing Wishart mixture models and a Density Peaks Clustering (DPC) algorithm. More precisely, the Simple Linear Iterative Clustering (SLIC) algorithm is first used to segment the PolSAR image into superpixels. Subsequently, the Wishart mixture models are adopted to model each superpixel, and the pairwise distances between different superpixels are measured by Cauchy-Schwarz divergence. Finally, the unsupervised classification result of the PolSAR image is obtained via clustering by fast search and find of density peaks. The experimental results obtained from different PolSAR images demonstrate that the proposed method is effective. -
表 1 AIRSAR数据的分类结果
Table 1. The classification results of AIRSAR data
方法 Bartlett方法 Wishart方法 本文方法 油菜 0 0.8727 0.9647 草地 0 0.3750 0.9028 土豆 1 1 0.9879 小麦 0.9988 0.8682 0.9890 裸地 0.9934 0.9861 0.9998 豌豆 0.9584 0.9622 0.9744 甜菜 0.9696 0.0015 0.5218 大麦 0.4850 0.6471 0.9892 苜蓿 0.9571 0.9853 0.9320 OA 0.7581 0.8007 0.9420 Kappa 0.7044 0.7682 0.9336 F1-score 0.6173 0.7850 0.9337 Purity 0.7581 0.8334 0.9432 表 2 混合Wishart模型不同分量个数的计算时间
Table 2. The computational time of Wishart mixture models with different components
时间(s) 10 15 25 35 40 EMISAR数据 0.3885 0.4361 0.6478 0.9187 1.1588 AIRSAR数据 1.7862 2.2289 3.3989 5.0603 5.5793 表 3 不同步骤的计算时间
Table 3. The computational time corresponding to each step
时间(s) SLIC MixWishart DPC EMISAR数据 0.3199 0.7120 7.3037 AIRSAR数据 1.2346 3.6250 91.8320 -
[1] Yang W, Zhong N, Yang X, et al.. Riemannian sparse coding for classification of PolSAR images[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016: 5698-5701. [2] 田维, 徐旭, 卞小林, 等.环境一号C卫星SAR图像典型环境遥感应用初探[J].雷达学报, 2014, 3(3): 339-351. http://radars.ie.ac.cn/CN/abstract/abstract147.shtmlTian Wei, Xu Xu, Bian Xiao-lin, et al.. Application of environment remote sensing by HJ-1C SAR imagery[J]. Journal of Radars, 2014, 3(3): 339-351. http://radars.ie.ac.cn/CN/abstract/abstract147.shtml [3] Lee J S, Grunes M R, Ainworth T L, et al.. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 1998, 4: 2178-2180. [4] Ferro-Famil L, Pottier E, and Lee J S. Unsupervised classification of multi-frequency and fully polarimetric SAR images based on the H/A/Alpha Wishart classifier[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2332-2342. doi: 10.1109/36.964969 [5] Ersahin K, Cumming I G, and Yedlin M J. Classification of Polarimetric SAR data using spectral graph partitioning[C]. IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS), Denver, USA, 1999: 1756-1759. [6] Kersten P R, Lee J S, and Ainworth T L. Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 519-527. doi: 10.1109/TGRS.2004.842108 [7] Song H, Yang W, Bai Y, et al.. Unsupervised classification of polarimetric SAR imagery using large-scale spectral clustering with spatial constraints[J]. International Journal of Remote Sensing, 2015, 36(11): 2816-2830. doi: 10.1080/01431161.2015.1043759 [8] Wang Y, Han C, and Tupin F. PolSAR data segmentation by combining tensor space cluster analysis and Markovian framework[J].IEEE Geoscience and Remote Sensing Letters, 2010, 7(1): 210-214. doi: 10.1109/LGRS.2009.2031660 [9] Rodriguez A and Laio A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344: 1492-1496. doi: 10.1126/science.1242072 [10] Tran T N, Wehrens R, Hoekman D H, et al.. Initialization of Markovian random field clustering of large remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1912-1919. doi: 10.1109/TGRS.2005.848427 [11] Cao F, Hong W, Wu Y, et al.. An unsupervised segmentation with an adaptive number of clusters using the SPAN/H/a/A space and the complex Wishart clustering for fully Polarimetric SAR data analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3454-3467. doi: 10.1109/TGRS.2007.907601 [12] Liu B, Hu H, Wang H, et al.. Superpixel-based classification with an adaptive number of classes for polarimetric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 907-924. doi: 10.1109/TGRS.2012.2203358 [13] Achanta R, Shaji A, Smith K, et al.. SLIC superpixel compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. doi: 10.1109/TPAMI.2012.120 [14] Yang W, Yang X L, Yan T H, et al.. Region-based change detection for polarimetric SAR images using wishart mixture models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11): 6746-6756. doi: 10.1109/TGRS.2016.2590145 [15] Nielsen F. K-MLE: A fast algorithm for learning statistical mixture models[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, 2012: 869-872. [16] Nielsen F. Closed-form information-theoretic divergences for statistical mixtures[C]. International Conference on Pattern Recognition, Tsukuba, 2012: 1723-1726. [17] 谢娟英, 高红超, 谢维信. K近邻优化的密度峰值快速搜索聚类算法[J].中国科学:信息科学, 2016, 46(2): 258-280. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=pzkx201602008&dbname=CJFD&dbcode=CJFQXie J Y, Gao H C, and Xie W X. K-nearnestneighbors optimized clustering algorithm by fastsearch and finding the density peaks of a dataset[J]. Scientia Sinica Informationis, 2016, 46(2): 258-280. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=pzkx201602008&dbname=CJFD&dbcode=CJFQ [18] Cherian A, Morellas V, and Papanikolopoulos N. Bayesian nonparametric clustering for positive definite matrices[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(5): 862-874. doi: 10.1109/TPAMI.2015.2456903