Loading [MathJax]/jax/output/SVG/jax.js

属性散射中心匹配及其在SAR目标识别中的应用

丁柏圆 文贡坚 余连生 马聪慧

滑文强, 王爽, 郭岩河, 等. 基于邻域最小生成树的半监督极化SAR图像分类方法[J]. 雷达学报, 2019, 8(4): 458–470. doi: 10.12000/JR18104
引用本文: 丁柏圆, 文贡坚, 余连生, 马聪慧. 属性散射中心匹配及其在SAR目标识别中的应用[J]. 雷达学报, 2017, 6(2): 157-166. doi: 10.12000/JR16104
HUA Wenqiang, WANG Shuang, GUO Yanhe, et al. Semi-supervised PolSAR image classification based on the neighborhood minimum spanning tree[J]. Journal of Radars, 2019, 8(4): 458–470. doi: 10.12000/JR18104
Citation: Ding Baiyuan, Wen Gongjian, Yu Liansheng, Ma Conghui. Matching of Attributed Scattering Center and Its Application to Synthetic Aperture Radar Automatic Target Recognition[J]. Journal of Radars, 2017, 6(2): 157-166. doi: 10.12000/JR16104

属性散射中心匹配及其在SAR目标识别中的应用

DOI: 10.12000/JR16104
基金项目: 

教育部新世纪优秀人才支持计划 NCET-11-0866

详细信息
    作者简介:

    丁柏圆 (1990–), 男, 博士研究生, 研究方向为SAR自动目标识别。E-mail:Dingbaiyuan_NUDT@163.com

    文贡坚 (1972–), 男, 教授, 博士生导师, 研究方向为遥感图像处理

    余连生 (1984–), 男, 助理工程师, 研究方向为摄影测量与遥感

    马聪慧 (1987–), 女, 1987年生, 博士研究生, 研究方向为SAR自动目标识别

    通讯作者:

    丁柏圆, E-mail:Dingbaiyuan_NUDT@163.com

  • 中图分类号: TN957

Matching of Attributed Scattering Center and Its Application to Synthetic Aperture Radar Automatic Target Recognition

Funds: 

The Program for New Century Excellent Talents in University NCET-11-0866

  • 摘要: 属性散射中心是合成孔径雷达 (Synthetic Aperture Radar, SAR) 图像的一个重要特征。该文提出了一种属性散射中心匹配方法并将其运用于SAR目标识别中。该方法首先基于属性散射中心模型提取待识别SAR图像和模板SAR图像的属性散射中心,进而采用Hungarian算法实现散射中心的匹配。在建立的匹配关系的基础上,设计了一种稳健的散射中心匹配度度量方法计算待识别散射中心与各类模板散射中心的匹配度。该匹配度准则充分考虑了单个散射中心强弱、匹配对强弱以及漏警、虚警带来的影响,对于散射中心集的匹配度的评价更为全面。基于Moving and Stationary Target Acquisition and Recognition (MSTAR) 数据集的实验验证了方法的有效性。

     

  • 图  1  一幅BMP2 SAR图像的参数估计重构结果 (动态范围40 dB)

    Figure  1.  The reconstruction of a BMP2 SAR image (Dynamic range: 40 dB)

    图  2  Hungarian算法实现散射中心匹配

    Figure  2.  The matching of attributed scattering centers by Hungarian algorithm

    图  3  门限计算

    Figure  3.  The calculation of the threshold

    图  4  “强匹配对”的权值计算

    Figure  4.  The weight of the "strong assignments"

    图  5  漏警和虚警的权值计算

    Figure  5.  The weight of MAs and FAs

    图  6  本文方法的基本流程

    Figure  6.  The general procedure of the proposed method

    图  7  本文方法在不同模型阶数的识别性能

    Figure  7.  The recognition performance under different model orders

    图  8  不同分辨率下的MSTAR图像

    Figure  8.  The MSTAR images under different resolutions

    图  9  不同分辨率下的识别率

    Figure  9.  The recognition performance under different resolutions

    图  10  不同信噪比下的MSTAR图像

    Figure  10.  The reconstructed MSTAR images under different SNRs

    图  11  不同信噪比下的识别性能

    Figure  11.  The recognition performance under different SNRs

    表  1  分配代价矩阵

    Table  1.   The cost matrix for Hungarian matching

    Y1 Y2 Yn MA
    X1 C11 C12 C1n M1
    X2 C21 C22 C2n M2
    Xm Cm1 Cm2 Cmn Mm
    FA F1
    F2
    Fn
    下载: 导出CSV

    表  2  属性的不确定性建模

    Table  2.   The modeling of attribute uncertainty

    属性类别 均值 方差
    方位向x x0 σ2=CRR2
    距离向y y0 σ2=RR2
    归一化幅度|A| |A0| σ2=0.1
    下载: 导出CSV

    表  3  模板集和测试集

    Table  3.   The template set and testing set

    模板集 样本数量 测试集 样本数量
    BMP2(SN_C21) 233 BMP2(SN_C21) 195
    BMP2(SN_9566) 232 BMP2(SN_9566) 196
    BMP2(SN_9563) 233 BMP2(SN_9563) 196
    BTR70(SN_C71) 233 BTR70(SN_C71) 196
    T72(SN_132) 232 T72(SN_132) 196
    T72(SN_812) 231 T72(SN_812) 195
    T72(SN_S7) 228 T72(SN_S7) 191
    下载: 导出CSV

    表  4  本文方法的识别结果

    Table  4.   The recognition result of the proposed method

    目标类型 识别结果 Pc(%)
    BMP2 BTR70 T72
    BMP2(SN_9563) 191 2 2 97.95
    BMP2(SN_9566) 195 1 0 99.49
    BMP2(SN_C21) 192 2 2 97.96
    BTR70 5 188 3 95.92
    T72(SN_132) 8 1 187 96.91
    T72(SN_812) 1 0 194 99.49
    T72(SN_S7) 4 1 186 97.31
    Average (%) 97.88
    下载: 导出CSV

    表  5  3种方法的识别性能对比

    Table  5.   The comparison of the three methods

    方法 识别率 (%) 消耗时间 (ms)
    本文方法 97.88 10.2
    方法一 93.46 3.5
    方法二 96.92 20.3
    下载: 导出CSV
  • [1] 黄培康, 殷红成, 许小剑.雷达目标特性[M].北京:电子工业出版社, 2005: 22–24.

    Huang Pei-kang, Yin Hong-cheng, and Xu Xiao-jian. Radar Target Signature[M]. Beijing: Publishing House of Electronics Industry, 2005: 22–24.
    [2] Keller J B. Geometrical theory of diffraction[J]. Journal of the Optical Society of America, 1962: 52(2): 116–130. doi: 10.1364/JOSA.52.000116
    [3] Gerry M J, Potter L C, and Gupta I J. A parametric model for synthetic aperture radar measurements[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(7): 1179–1188. doi: 10.1109/8.785750
    [4] Chiang H-C, Moses R L, and Potter L C. Model-based classification of radar images[J]. IEEE Transactions on Information Theory, 2000, 46(5): 1842–1854. doi: 10.1109/18.857795
    [5] 唐涛, 粟毅.散射中心特征序贯匹配的SAR图像目标识别方法[J].系统工程与电子技术, 2012, 34(6): 1131–1135. http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201206011.htm

    Tang Tao and Su Yi. Object recognition in SAR imagery using sequential feature matching of scattering centers[J]. System Engineering and Electronics, 2012, 34(6): 1131–1135. http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201206011.htm
    [6] Sirui Tian, Kuiying Yin, Chao Wang, et al.. An SAR ATR method based on scattering center feature and bipartite graph matching[J]. IETE Technical Review, 2015, 32(5): 364–375. doi: 10.1080/02564602.2015.1019941
    [7] Bhanu B and Lin Y Q. Stochastic models for recognition of occluded targets[J]. Pattern Recognition, 2003, 36(12): 2855–2873. doi: 10.1016/S0031-3203(03)00182-1
    [8] Dungan K E and Potter L C. Classifying transformationvariant attributed patterns[J]. Pattern Recognition, 2010, 43(11): 3805–3816. doi: 10.1016/j.patcog.2010.05.033
    [9] Dungan K E and Potter L C. Classifying sets of attributed scattering centers using a hash coded database[C]. Proceedings of Algorithms for Synthetic Aperture Radar Imagery XVII, SPIE, Florida, 2010: 7737R01–7737R11.
    [10] Zhou Jianxiong, Shi Zhiguang, Chen Xiao, et al.. Automatic target recognition of SAR images based on global scattering center model[J]. IEEE Transactions on Geosciences and Remote Sensing, 2011, 49(10): 3713–3729. doi: 10.1109/TGRS.2011.2162526
    [11] Kim Taejoon and Dong Miaomiao. An iterative Hungarian method to joint relay selection and resource allocation for D2D communications[J]. IEEE Wireless Communications Letters, 2014, 3(6): 625–629. doi: 10.1109/LWC.2014.2338318
    [12] Li D, Zhang G, Wu Z, et al.. An edge embedded markerbased watershed algorithm for high spatial resolution remote sensing image segmentatio[J]. IEEE Transactions on Image Processing, 2010, 19(10): 2781–2787. doi: 10.1109/TIP.2010.2049528
    [13] Jing M, Zhou X, and Qi C. Quasi-Newton Iterative Projection algorithm for sparse recovery[J]. Neurocomputing, 2014, 144: 169–173. doi: 10.1016/j.neucom.2014.04.055
    [14] Chen J, Li Y, Wang J, et al.. Adaptive CLEAN algorithm for millimetre wave synthetic aperture imaging[J]. IET Image Processing, 2015, 9(3): 218–225. doi: 10.1049/iet-ipr.2014.0443
    [15] 陶勇, 胡卫东.基于图像域的属性散射中心分析[J].信号处理, 2009, 25(10): 1510–1514. doi: 10.3969/j.issn.1003-0530.2009.10.004

    Tao Yong and Hu Wei-Dong. Analysis of attributed scattering center based on image domain[J]. Signal Processing, 2009, 25(10): 1510–1514. doi: 10.3969/j.issn.1003-0530.2009.10.004
    [16] 徐牧, 王雪松, 肖顺平.基于Hough变换与目标主轴提取的SAR图像目标方位角估计方法[J].电子与信息学报, 2007, 29(2): 370–374. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX200702024.htm

    Xu Mu, Wang Xue-song, and Xiao Shun-ping. Target aspect estimation in SAR imagery based on Hough transform and major axis extraction[J]. Journal of Electronic & Information Technology, 2007, 29(2): 370–374. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX200702024.htm
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-15
  • 修回日期:  2016-11-25
  • 网络出版日期:  2017-04-28

目录

    /

    返回文章
    返回