一种基于射频开关切换的伪随机编码超宽带多发多收雷达设计

苏海 张晓娟 叶盛波 张群英 方广有

苏海, 张晓娟, 叶盛波, 张群英, 方广有. 一种基于射频开关切换的伪随机编码超宽带多发多收雷达设计[J]. 雷达学报, 2017, 6(1): 43-54. doi: 10.12000/JR16076
引用本文: 苏海, 张晓娟, 叶盛波, 张群英, 方广有. 一种基于射频开关切换的伪随机编码超宽带多发多收雷达设计[J]. 雷达学报, 2017, 6(1): 43-54. doi: 10.12000/JR16076
Su Hai, Zhang Xiaojuan, Ye Shengbo, Zhang Qunying, Fang Guangyou. Design of an Ultra-wideband Pseudo Random Coded MIMO Radar Based on Radio Frequency Switches[J]. Journal of Radars, 2017, 6(1): 43-54. doi: 10.12000/JR16076
Citation: Su Hai, Zhang Xiaojuan, Ye Shengbo, Zhang Qunying, Fang Guangyou. Design of an Ultra-wideband Pseudo Random Coded MIMO Radar Based on Radio Frequency Switches[J]. Journal of Radars, 2017, 6(1): 43-54. doi: 10.12000/JR16076

一种基于射频开关切换的伪随机编码超宽带多发多收雷达设计

DOI: 10.12000/JR16076
基金项目: 国家自然科学基金(61172017),中国科学院国防科技创新基金
详细信息
    作者简介:

    苏海:苏   海(1991–),男,广西北流人,现为中国科学院电子学研究所在读硕士研究生,主要研究方向为伪随机编码体制超宽带雷达技术。Email: suhai_214@163.com

    张晓娟(1964–),女,现为中国科学院电子学研究所研究员,博士生导师,主要研究方向为微波成像新方法及应用,微波遥感、天线、计算电磁学、电磁散射与逆散射。E-mail: xjzhang@mail.ie.ac.cn

    叶盛波(1983–),男,湖北武汉人,现为中国科学院电子学研究所副研究员,研究方向为超宽带雷达系统、探地雷达研制、雷达信号处理方法研究。E-mail: sbye@mail.ie.ac.cn

    张群英(1970–),女,陕西西安人,现为中国科学院电子学研究所研究员,博士生导师,研究方向为微波探测新方法研究、超宽带雷达系统、雷达信号处理。E-mail: qyzhang@mail.ie.ac.cn

    方广有(1963–),男,现为中国科学院电子学研究所研究员,博士生导师,中国科学院电子学研究所副所长,研究方向为超宽带雷达系统、测月雷达、太赫兹成像、地球物理探测方法、电磁场理论。E-mail: gyfang@mail.ie.ac.cn

    通讯作者:

    张晓娟   xjzhang@mail.ie.ac.cn

  • 中图分类号: TN958

Design of an Ultra-wideband Pseudo Random Coded MIMO Radar Based on Radio Frequency Switches

Funds: The National Natural Science Foundation of China (61172017), The National Defense Science and Technology Innovation Fundation of Chinese Academy of Sciences
  • 摘要: 多发多收超宽带雷达能实时探测到目标的距离向和方位向信息,在地质勘测、生命救援、穿墙目标跟踪等领域具有重要的应用价值。该文提出一种基于射频开关切换的伪随机编码超宽带多发多收雷达设计方法,研制出一套伪随机编码超宽带MIMO雷达系统。为了降低系统的成本和复杂性,采用射频开关切换的方法来实现多发多收。由于射频开关的耐压值有限,采用峰值功率为18 dBm的伪随机编码信号作为雷达发射信号。最后通过混合采样方法实现超宽带信号的采样接收,并且调用FPGA内部的DSP硬核来进行实时脉冲压缩,以缓解后续数据处理运算量大的问题。实验结果表明,该雷达系统能实时探测到目标的方位向和距离向信息。

     

  • 图  1  雷达工作过程示意图

    Figure  1.  Schematic diagram of radar operating

    图  2  高速伪随机编码信号产生原理图

    Figure  2.  Schematic diagram of high-speed pseudo random coded signal

    图  3  混合采样时序图

    Figure  3.  Timing diagram of hybrid sampling

    图  4  脉冲压缩并行运算框架

    Figure  4.  Structure of pulse compression computed parallelly

    图  5  多发多收雷达系统原理图

    Figure  5.  Schematic diagram of MIMO radar system

    图  6  多发多收雷达系统样机

    Figure  6.  MIMO radar system

    图  7  雷达发射信号

    Figure  7.  Radar transmitting signal

    图  8  脉冲压缩结果

    Figure  8.  Results of pulse compression

    图  9  收发开关级联结构图

    Figure  9.  Structure of radio frequency switches

    图  10  各个通道一致性测试结果

    Figure  10.  Results of consistency of all channels

    图  11  不同衰减值的闭环测试结果

    Figure  11.  Results of different attenuation

    图  12  不同体制雷达的穿墙测试结果

    Figure  12.  Results of different radar systems though the wall

    图  13  2发4收对空气中两个目标测试场景

    Figure  13.  Experimental scene using 4-input 2-output radar to detect two targets in the air

    图  14  两个目标在不同间距时的测试结果图

    Figure  14.  Results of different distance of two targets

    图  15  2发4收穿墙测试场景

    Figure  15.  Experimental scene using 4-input 2-output radar to detect human through the wall

    图  16  墙体后目标的测试结果图

    Figure  16.  Results of human behind the wall

    表  1  多发多收雷达系统主要参数

    Table  1.   Main parameter of MIMO radar

    参数 数值
    通道数量 mn收(最大4发16收)
    码元形式 m序列
    码元长度 1023
    单个码元宽度(ns) 0.9375
    发射信号幅值(Vpp) 5
    信号中心频率(GHz) 1.06
    –10 dB信号带宽(GHz) 0.2~2.1
    实时采样率(MSPS) 200
    混合采样率(GSPS) 12.8
    平均次数(times) 32
    接收机灵敏度(dBm) –97
    脉冲重复频率(KHz) 333.3
    采样时窗(ns) 300
    扫描率(track/s) 164
    成像速率(frame/s) $\frac{{164}}{{m \cdot n}}$
    总功耗(W) 20
    下载: 导出CSV

    表  2  射频开关详细参数

    Table  2.   Main parameter of MIMO radar

    参数 数值
    带宽 0~3 GHz
    插损 1.5 dB@0.5~2 GHz
    1 dB压缩点 25 dBm@0.5~2 GHz
    隔离度 37 dB@0.5~2 GHz
    切换速度 25 ns/Turn on; 45 ns/Turn off
    下载: 导出CSV
  • [1] Immoreev I I and Fedotov P G S D V. Ultra wideband radar systems: Advantages and disadvantages[C]. IEEE Conference on Ultra Wideband Systems and Technologies, Baltimore, USA, 2002: 201–205. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1006348
    [2] Parrini F, Fratini M, Pieraccini M,et al.. ULTRA: Wideband ground penetrating radar[C]. 2006 European Radar Conference, UK, 2006: 182–185. http://ieeexplore.ieee.org/document/4058288/
    [3] 吴世有, 谭恺, 徐艳云, 等. 超宽带穿墙雷达天线阵列配置分析及运动人体跟踪成像算法[J]. 电子与信息学报, 2012, 34(11): 2601–2607. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201211009.htm

    Wu Shi-you, Tan Kai, Xu Yang-yun,et al.. Study on UWB through-wall radar antenna array configuration and moving person tracking and imaging algorithm[J].Journal of Electronics &Information Technology, 2012, 34(11): 2601–2607. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201211009.htm
    [4] Haddad W S. The Rubble Rescue Radar (RRR): A low power hand-held microwave device for the detection of trapped human personnel[R]. Lawrence Livermore National Laboratory, CA (United States), 1997. http://digital.library.unt.edu/ark:/67531/metadc693400/m2/1/high_res_d/571102.pdf
    [5] Sachs J, Peyerl P, and Zetik R. Stimulation of UWB-sensors: Pulse or maximum sequence[C]. International Workshop on UWB Systems, Oulu, Finland, 2003: 5. http://ieeexplore.ieee.org/document/5117727/authors
    [6] Sachs J, Peyerl P, and Rossberg M. A new UWB-principle for sensor-array application[C]. Instrumentation and Measurement Technology Conference, Venice, Italy, 1999, 3: 1390–1395. doi: 10.1002/9783527651818.ch3/summary
    [7] 夏正欢, 张群英, 叶盛波, 等. 一种便携式伪随机编码超宽带人体感知雷达设计[J]. 雷达学报, 2015, 4(5): 527–537. http://radars.ie.ac.cn/CN/abstract/abstract276.shtml

    Xia Zheng-huan, Zhang Qun-ying, Ye Sheng-bo,et al.. Design of a handheld pseudo random coded UWB radar for human sensing[J].Journal of Radars, 2015, 4(5): 527–537. http://radars.ie.ac.cn/CN/abstract/abstract276.shtml
    [8] 张群英, 方广有. 伪随机序列编码脉冲信号在探地雷达中的应用研究[J]. 电子与信息学报, 2011, 33(2): 424–428. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201102031.htm

    Zhang Qun-ying and Fang Guang-you. The study of pseudo random sequence’s application to GPR[J].Journal of Electronics&Information Technology, 2011, 33(2): 424–428. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201102031.htm
    [9] Nicollin F, Barbin Y, Kofman W,et al.. An HF bi-phase shift keying radar: Application to ice sounding in Western Alps and Spitsbergen glaciers[J].IEEE Transactions onGeoscience and Remote Sensing, 1992, 30(5): 1025–1033. doi: 10.1109/36.175337
    [10] Utsi V. Design of a GPR for deep investigations[C]. 2007 4th International Workshop on Advanced Ground Penetrating Radar, Porto Alegre, RS, Brazil, 2007: 222–225.
    [11] Xia Z, Zhang Q, Ye S,et al.. A novel low-frequency coded ground penetrating radar for deep detection[J].IEICE Electronics Express, 2015, 12(11): 20150200. https://www.jstage.jst.go.jp/article/elex/12/11/12_12.20150200/_article
    [12] Xia Z, Fang G, Ye S,et al.. A novel handheld pseudo random coded UWB radar for human sensing applications[J].IEICE Electronics Express, 2014, 11(23): 20140981. https://www.researchgate.net/profile/Fang_Guangyou/publication/278399450_A_novel_handheld_pseudo_random_coded_UWB_radar_for_human_sensing_applications/links/573e80d708ae9ace841136ed.pdf?origin=publication_detail
    [13] Andrieu J, Gallais F, Mallepeyre V,et al.. Land mine detection with an ultra-wideband SAR system[C]. Proceedings SPIE 4742 Detection and Remediation Technologies for Mines and Minelike Targets VII, 2002, 4742: 237–247. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=888254
    [14] Fishler E, Haimovich A, Blum R,et al.. MIMO radar: An idea whose time has come[C]. Proceedings of the 2004 IEEE Radar Conference, Philadelphia PA, USA, 2004: 71–78. http://ieeexplore.ieee.org/iel5/9199/29174/01316398.pdf
    [15] Nag S, Barnes M A, Payment T,et al.. Ultrawideband through-wall radar for detecting the motion of people in real time[C]. Proceedings SPIE 4744: Radar Sensor Technology and Data Visualization, 2002, 4744: 48–57. http://proceedings.spiedigitallibrary.org/mobile/proceeding.aspx?articleid=888676
    [16] Yang Y and Fathy A E. See-through-wall imaging using ultra wideband short-pulse radar system[C]. 2005 IEEE Antennas and Propagation Society International Symposium, Washington DC, USA, 2005, 3: 334–337. http://ieeexplore.ieee.org/document/1552508/
    [17] Yang Y and Fathy A E. Development and implementation of a real-time see-through-wall radar system based on FPGA[J].IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(5): 1270–1280. doi: 10.1109/TGRS.2008.2010251
    [18] Shize G, Shenghe S, and Zhongting Z. A novel equivalent sampling method using in the digital storage oscilloscopes[C]. 1994 IEEE Instrumentation and Measurement Technology Conference, Hamamatsu, Japan, 1994, 2: 530–532. http://ieeexplore.ieee.org/document/351901/
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  3184
  • HTML全文浏览量:  669
  • PDF下载量:  835
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-30
  • 修回日期:  2017-02-12
  • 网络出版日期:  2017-02-28

目录

    /

    返回文章
    返回