Design of an Ultra-wideband Pseudo Random Coded MIMO Radar Based on Radio Frequency Switches
-
摘要: 多发多收超宽带雷达能实时探测到目标的距离向和方位向信息,在地质勘测、生命救援、穿墙目标跟踪等领域具有重要的应用价值。该文提出一种基于射频开关切换的伪随机编码超宽带多发多收雷达设计方法,研制出一套伪随机编码超宽带MIMO雷达系统。为了降低系统的成本和复杂性,采用射频开关切换的方法来实现多发多收。由于射频开关的耐压值有限,采用峰值功率为18 dBm的伪随机编码信号作为雷达发射信号。最后通过混合采样方法实现超宽带信号的采样接收,并且调用FPGA内部的DSP硬核来进行实时脉冲压缩,以缓解后续数据处理运算量大的问题。实验结果表明,该雷达系统能实时探测到目标的方位向和距离向信息。Abstract: A Multiple-Input Multiple-Output (MIMO) ultra-wideband radar can detect the range and azimuth information of targets in real time. It is widely used for geological surveys, life rescue, through-wall tracking, and other military or civil fields. This paper presents the design of an ultra-wideband pseudo random coded MIMO radar that is based on Radio Frequency (RF) switches and implements a MIMO radar system. RF switches are employed to reduce cost and complexity of the system. As the switch pressure value is limited, the peak power of the transmitting signal is 18 dBm. The ultra-wideband radar echo is obtained by hybrid sampling, and pulse compression is computed by Digital Signal Processors (DSPs) embedded in an Field-Programmable Gate Array (FPGA) to simplify the signal process. The experiment illustrates that the radar system can detect the range and azimuth information of targets in real time.
-
表 1 多发多收雷达系统主要参数
Table 1. Main parameter of MIMO radar
参数 数值 通道数量 m发n收(最大4发16收) 码元形式 m序列 码元长度 1023 单个码元宽度(ns) 0.9375 发射信号幅值(Vpp) 5 信号中心频率(GHz) 1.06 –10 dB信号带宽(GHz) 0.2~2.1 实时采样率(MSPS) 200 混合采样率(GSPS) 12.8 平均次数(times) 32 接收机灵敏度(dBm) –97 脉冲重复频率(KHz) 333.3 采样时窗(ns) 300 扫描率(track/s) 164 成像速率(frame/s) $\frac{{164}}{{m \cdot n}}$ 总功耗(W) 20 表 2 射频开关详细参数
Table 2. Main parameter of MIMO radar
参数 数值 带宽 0~3 GHz 插损 1.5 dB@0.5~2 GHz 1 dB压缩点 25 dBm@0.5~2 GHz 隔离度 37 dB@0.5~2 GHz 切换速度 25 ns/Turn on; 45 ns/Turn off -
[1] Immoreev I I and Fedotov P G S D V. Ultra wideband radar systems: Advantages and disadvantages[C]. IEEE Conference on Ultra Wideband Systems and Technologies, Baltimore, USA, 2002: 201–205. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1006348 [2] Parrini F, Fratini M, Pieraccini M,et al.. ULTRA: Wideband ground penetrating radar[C]. 2006 European Radar Conference, UK, 2006: 182–185. http://ieeexplore.ieee.org/document/4058288/ [3] 吴世有, 谭恺, 徐艳云, 等. 超宽带穿墙雷达天线阵列配置分析及运动人体跟踪成像算法[J]. 电子与信息学报, 2012, 34(11): 2601–2607. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201211009.htmWu Shi-you, Tan Kai, Xu Yang-yun,et al.. Study on UWB through-wall radar antenna array configuration and moving person tracking and imaging algorithm[J].Journal of Electronics &Information Technology, 2012, 34(11): 2601–2607. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201211009.htm [4] Haddad W S. The Rubble Rescue Radar (RRR): A low power hand-held microwave device for the detection of trapped human personnel[R]. Lawrence Livermore National Laboratory, CA (United States), 1997. http://digital.library.unt.edu/ark:/67531/metadc693400/m2/1/high_res_d/571102.pdf [5] Sachs J, Peyerl P, and Zetik R. Stimulation of UWB-sensors: Pulse or maximum sequence[C]. International Workshop on UWB Systems, Oulu, Finland, 2003: 5. http://ieeexplore.ieee.org/document/5117727/authors [6] Sachs J, Peyerl P, and Rossberg M. A new UWB-principle for sensor-array application[C]. Instrumentation and Measurement Technology Conference, Venice, Italy, 1999, 3: 1390–1395. doi: 10.1002/9783527651818.ch3/summary [7] 夏正欢, 张群英, 叶盛波, 等. 一种便携式伪随机编码超宽带人体感知雷达设计[J]. 雷达学报, 2015, 4(5): 527–537. http://radars.ie.ac.cn/CN/abstract/abstract276.shtmlXia Zheng-huan, Zhang Qun-ying, Ye Sheng-bo,et al.. Design of a handheld pseudo random coded UWB radar for human sensing[J].Journal of Radars, 2015, 4(5): 527–537. http://radars.ie.ac.cn/CN/abstract/abstract276.shtml [8] 张群英, 方广有. 伪随机序列编码脉冲信号在探地雷达中的应用研究[J]. 电子与信息学报, 2011, 33(2): 424–428. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201102031.htmZhang Qun-ying and Fang Guang-you. The study of pseudo random sequence’s application to GPR[J].Journal of Electronics&Information Technology, 2011, 33(2): 424–428. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201102031.htm [9] Nicollin F, Barbin Y, Kofman W,et al.. An HF bi-phase shift keying radar: Application to ice sounding in Western Alps and Spitsbergen glaciers[J].IEEE Transactions onGeoscience and Remote Sensing, 1992, 30(5): 1025–1033. doi: 10.1109/36.175337 [10] Utsi V. Design of a GPR for deep investigations[C]. 2007 4th International Workshop on Advanced Ground Penetrating Radar, Porto Alegre, RS, Brazil, 2007: 222–225. [11] Xia Z, Zhang Q, Ye S,et al.. A novel low-frequency coded ground penetrating radar for deep detection[J].IEICE Electronics Express, 2015, 12(11): 20150200. https://www.jstage.jst.go.jp/article/elex/12/11/12_12.20150200/_article [12] Xia Z, Fang G, Ye S,et al.. A novel handheld pseudo random coded UWB radar for human sensing applications[J].IEICE Electronics Express, 2014, 11(23): 20140981. https://www.researchgate.net/profile/Fang_Guangyou/publication/278399450_A_novel_handheld_pseudo_random_coded_UWB_radar_for_human_sensing_applications/links/573e80d708ae9ace841136ed.pdf?origin=publication_detail [13] Andrieu J, Gallais F, Mallepeyre V,et al.. Land mine detection with an ultra-wideband SAR system[C]. Proceedings SPIE 4742 Detection and Remediation Technologies for Mines and Minelike Targets VII, 2002, 4742: 237–247. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=888254 [14] Fishler E, Haimovich A, Blum R,et al.. MIMO radar: An idea whose time has come[C]. Proceedings of the 2004 IEEE Radar Conference, Philadelphia PA, USA, 2004: 71–78. http://ieeexplore.ieee.org/iel5/9199/29174/01316398.pdf [15] Nag S, Barnes M A, Payment T,et al.. Ultrawideband through-wall radar for detecting the motion of people in real time[C]. Proceedings SPIE 4744: Radar Sensor Technology and Data Visualization, 2002, 4744: 48–57. http://proceedings.spiedigitallibrary.org/mobile/proceeding.aspx?articleid=888676 [16] Yang Y and Fathy A E. See-through-wall imaging using ultra wideband short-pulse radar system[C]. 2005 IEEE Antennas and Propagation Society International Symposium, Washington DC, USA, 2005, 3: 334–337. http://ieeexplore.ieee.org/document/1552508/ [17] Yang Y and Fathy A E. Development and implementation of a real-time see-through-wall radar system based on FPGA[J].IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(5): 1270–1280. doi: 10.1109/TGRS.2008.2010251 [18] Shize G, Shenghe S, and Zhongting Z. A novel equivalent sampling method using in the digital storage oscilloscopes[C]. 1994 IEEE Instrumentation and Measurement Technology Conference, Hamamatsu, Japan, 1994, 2: 530–532. http://ieeexplore.ieee.org/document/351901/