组网雷达中弹道目标微动特征提取与识别综述

冯存前 李靖卿 贺思三 张豪

冯存前, 李靖卿, 贺思三, 张豪. 组网雷达中弹道目标微动特征提取与识别综述[J]. 雷达学报, 2015, 4(6): 609-620. doi: 10.12000/JR15084
引用本文: 冯存前, 李靖卿, 贺思三, 张豪. 组网雷达中弹道目标微动特征提取与识别综述[J]. 雷达学报, 2015, 4(6): 609-620. doi: 10.12000/JR15084
Feng Cun-qian, Li Jing-qing, He Si-san, Zhang Hao. Micro-Doppler Feature Extraction and Recognition Based on Netted Radar for Ballistic Targets[J]. Journal of Radars, 2015, 4(6): 609-620. doi: 10.12000/JR15084
Citation: Feng Cun-qian, Li Jing-qing, He Si-san, Zhang Hao. Micro-Doppler Feature Extraction and Recognition Based on Netted Radar for Ballistic Targets[J]. Journal of Radars, 2015, 4(6): 609-620. doi: 10.12000/JR15084

组网雷达中弹道目标微动特征提取与识别综述

doi: 10.12000/JR15084
基金项目: 

国家自然科学基金(61372166,61501495),陕西省自然科学基础研究计划(2014JM8308)

详细信息
    作者简介:

    冯存前(1975-),男,空军工程大学教授,博士生导师,研究方向为雷达信号处理、雷达电子战新技术。E-mail:fengcunqian@sina.com;李靖卿(1989–),男,2013年于空军工程大学获军事学学士学位,现为空军工程大学雷达电子防御研究室研究生,研究方向为雷达信号处理。E-mail:lijingqing_1025@126.com;贺思三(1981-),男,空军工程大学讲师,研究方向为雷达信号处理、复杂运动目标成像。E-mail:hesisan@163.com;张豪(1989-),男,2013年于空军工程大学获军事学学士学位,现为空军工程大学雷达信号与信息处理实验室研究生,研究方向为雷达信号处理。E-mail:875971393@qq.com

    通讯作者:

    李靖卿lijingqing_1025@126.com

Micro-Doppler Feature Extraction and Recognition Based on Netted Radar for Ballistic Targets

Funds: 

The National Natural Science Foundation of China (61372166, 61501495), The Natural Science Foundation Research Project of Shaanxi Province (2014JM8308)

  • 摘要: 针对组网雷达中弹道中段目标微动特征难以识别与分辨的问题,文中分析了弹道中段目标微动特征的差异,总结了基于低分辨雷达网和高分辨成像雷达网的雷达目标微动特征提取技术在反导预警探测中的应用与研究现状,并分析了此类识别手段的优缺点。在此基础上,探讨了今后低分辨雷达和高分辨成像雷达相结合的混合体制雷达网在弹道中段目标识别中的主要研究方向,为进一步推动组网雷达中弹道目标识别研究提供参考和基础。

     

  • [1] Steve F, Andrew M S, John M C, et al.. Countermeasures: a technical evaluation of the operational effectiveness of the planned US national missile defense system[C]. Union of Concerned Scienstists, Cambridge MA, 2000.
    [2] Cohort 311-121O/Team LCS, Missile Defense in the 21st Century Acquisition Environment: Exploring a BMD-Capable LCS Mission Package[A]. Naval Postgraduate School, Monterey, CA, 2013: 1-8.
    [3] Johnson S B. Technical and institutional factors in the emergence of project management[J]. International Journal of Project Management, 2013, 31(5): 670-681.
    [4] 周万幸. 弹道导弹雷达目标识别技术[M]. 北京: 电子工业出版社, 2011: 10-27. Zhou W X. BMD Radar Target Recognition Technology[M]. Beijing: Publishing House of Electronics Industry, 2011: 10-27.
    [5] Chen V C. Analysis of radar micro-Doppler signature with time-frequency transform[C]. Proceedings of the IEEE Workshop on Statistical Signal and Array Processing, Pocono Manor, PA, 2000: 463-466.
    [6] Chen V C. Advances in applications of radar micro-Doppler signatures[C]. 2014 IEEE Conference on Antenna Measurements Application, Antibes, Juan-les-pins, France, 2014: 1-4.
    [7] Liu L H, McLernon D, Ghogho M, et al.. Ballistic missile detection via micro-Doppler frequency estimation from radar return[J]. Digital Signal Processing, 2012, 22(1): 87-95.
    [8] Schultz K, Davidson S, Stein A, et al.. Range Doppler laser radar for midcourse discrimination: the Firefly experiments[C]. AIAA and SDIO 2nd Annual Interceptor Technology Conference, Albuquerque, NM, 1993: 1-12. doi: 10.251416.1993-2653.
    [9] Jaenisch H. Discrimination via Phased Derived Range[R]. MDA-02-003, Missile Defense Agency Small Business Innovation Research Program, 2002.
    [10] Guo K Y, Sheng X Q, Shen R H, et al.. Influence of migratory scattering phenomenon on micro-motion characteristics contained in radar signals[J]. IET Radar, Sonar Navigation, 2012, 7(5): 579-589.
    [11] Chen V C, Li F Y, Ho S S, et al.. Micro-Doppler effect in radar: phenomenon, model and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2-21.
    [12] Thayaparan T, Stankovic L, and Djurovic I. Micro-Doppler-based target detection and feature extraction in indoor and outdoor environments[J]. Journal of the Franklin Institute, 2008, 345(6): 700-722.
    [13] 李金梁, 王雪松, 刘阳, 等. 雷达目标旋转部件的微Doppler效应[J]. 电子与信息学报, 2009, 31(3): 583-587. Li J L, Wang X S, Liu Y, et al.. Micro-Doppler effect of rotation structure on radar targets[J]. Journal of Electronics Information Technology, 2009, 31(3): 583-587.
    [14] 陈行勇, 陈海坚, 王祎, 等. 弹道导弹目标回波信号建模与雷达特征分析[J]. 现代雷达, 2010, 32(3): 27-31. Chen X Y, Chen H J, Wang Y, et al.. Analysis of echo model and radar signature for a ballistic missile target[J]. Modern Radar, 2010, 32(3): 27-31.
    [15] 高红卫, 谢良贵, 文树梁, 等. 弹道导弹目标微动特性的微多普勒分析与仿真研究[J]. 系统仿真学报, 2009, 21(4): 954-958. Gao H W, Xie L G, Wen S L, et al.. Micro-Doppler analysis and simulation study of micro-motion performance of ballistic missile targets[J]. Journal of System Simulation, 2009, 21(4): 954-958.
    [16] 孙永健, 穆贺强, 程臻, 等. 基于四元数矩阵奇异值的目标特征提取与识别[J]. 电波科学学报, 2015, 30(1): 160-166. Sun Y J, Mu H Q, Cheng Z, et al.. Ballistic targets feature extraction and recognition based on QMSVD[J]. Chinese Journal of Radio Science, 2015, 30(1): 160-166.
    [17] 伍光新, 王建明, 周伟光. 进动弹头目标微多普勒分析与仿真[J].现代雷达, 2010, 32(12): 30-34. Wu G X, Wang J M, and Zhou W G. Micro-Doppler analysis and simulation on precession warhead target[J]. Modern Radar, 2010, 32(12): 30-34.
    [18] 刘进, 王雪松, 马梁, 等. 空间进动目标动态散射特性的实验研究[J]. 航空学报, 2010, 31(5): 1014-1023. Liu J, Wang X S, Ma L, et al.. Experimental study on dynamic scattering properties of space precession target[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5): 1014-1023.
    [19] 马梁, 刘进, 王涛, 等. 旋转对称目标滑动型散射中心的微Dopller特性[J]. 中国科学:信息科学, 2011, 41(5): 605-616. Ma L, Liu J, Wang T, et al.. Micro-Doppler characteristics of sliding-type scattering center on rotationally symmetric target[J]. Scientia Sinica Informationis, 2011, 41(5): 605-616.
    [20] Bilik I, Tabrikian J, and Cohen A. GMM-based target classification for ground surveillance Doppler radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 267-278.
    [21] 关永胜, 左群声, 刘宏伟. 基于微多普勒特征的空间锥体目标识别[J]. 电波科学学报, 2011, 26(4): 209-215. Guan Y S, Zuo Q S, and Liu H W. Micro-Doppler signature based cone-shaped target recognition[J]. Chinese Journal of Radio Science, 2011, 26(4): 209-215.
    [22] 韩勋, 杜兰, 刘宏伟, 等. 基于时频分布的空间锥体目标微动形式分类[J]. 系统工程与电子技术, 2013, 35(4): 684-691. Han X, Du L, Liu H W, et al.. Classification of micro-motion form of space cone-shaped objects based on time-frequency distribution[J]. Systems Engineering and Electronics, 2013, 35(4): 684-691.
    [23] 刘永祥, 黎湘, 庄钊文. 导弹防御系统中的雷达目标识别技术进展[J]. 系统工程与电子技术, 2006, 28(8): 1188-1192. Liu Y X, Li X, and Zhuang Z W. Review of radar target discrimination in ballistic missile defense system[J]. Systems Engineering and Electronics, 2006, 28(8): 1188-1192.
    [24] Liu L H, Ghogho M, McLernon D, et al.. Pseudo maximum likelihood estimation of ballistic missile precession frequency[J]. Signal Processing, 2012, 92(9): 2018-2028.
    [25] Liu Y X, Li X, and Zhuang Z W. Estimation of micro-motion parameters based on micro-Doppler[J]. IET Signal Processing, 2010, 4(3): 213-217.
    [26] Lei P, Sun J P, Wang J, et al.. Micro-motion parameter estimation of free rigid targets based on radar micro-Doppler[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 3776-3786.
    [27] 姚汉英, 孙文峰, 马晓岩. 基于高分辨距离像序列的锥体目标进动和结构参数估计[J].电子与信息学报, 2013, 35(3): 537-543. Yao H Y, Sun W F, and Ma X Y. Precession and structure parameters estimation of cone-cylinder target based on the HRRPs[J]. Journal of Electronics Information Technology, 2013, 35(3): 537-543.
    [28] Luo Y, Zhang Q, Qiu C W, et al.. Three-dimensional micromotion signature extraction of rotating targets in OFDM-LFM MIMO radar[J]. Progress In Electromagnetics Research, 2013, 140: 733-759.
    [29] 金光虎, 高勋章, 黎湘, 等. 基于ISAR像序列的弹道目标进动特征提取[J]. 电子学报, 2010, 38(6): 1233-1238. Jin G H, Gao X Z, Li X, et al.. Precession feature extraction of ballistic targets based on dynamic ISAR image sequence[J]. Acta Electronica Sinica, 2010, 38(6): 1233-1238.
    [30] 肖立, 周剑雄, 何峻, 等. 弹道中段目标进动周期估计的改进自相关法[J]. 航空学报, 2010, 31(4): 812-818. Xiao L, Zhou J X, He J, et al.. Improved autocorrelation method for precession period estimation of ballistic target in midcourse[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4): 812-818.
    [31] Zou F, Fu Y W, and Jiang W D. Micro-motion effect in inverse synthetic aperture radar imaging of ballistic mid-course targets[J]. Journal of Central South University, 2012, 19(6): 1548-1557.
    [32] Bai X R, Zhou F, Xing M D, et al.. High-resolution ISAR imaging of targets with rotating parts[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2530-2543.
    [33] Zhang L, Li Y C, Liu Y, et al.. Time-frequency characteristics based on motion estimation and imaging for high speed spinning targets via narrowband waveforms[J]. SCIENCE CHINA Information Sciences, 2010, 53(8): 1628-1640.
    [34] 雷腾, 刘进忙, 李松, 等. 基于MP稀疏分解的弹道中段目标微动ISAR成像新方法[J]. 系统工程与电子技术, 2011, 33(12): 2649-2654. Lei T, Liu J M, Li S, et al.. A novel ISAR imaging method of ballistic midcourse targets based on MP sparse decomposition[J]. Systems Engineering and Electronics, 2011, 33(12): 2649-2654.
    [35] Chen V C. Micro-Doppler Effect in Radar[M]. [S. l.]: Artech House, 2011.
    [36] Gao H W, Xie L G, Wen S L, et al.. Micro-Doppler signature extraction from ballistic target with micro- motions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 1969-1981.
    [37] Holzrichter J F. S-band radar micro-Doppler signatures for BMD discrimination[R]. MDA-04-137, Missile Defense Agency Small Business Innovation Research Program, 2004.
    [38] Ballistic Missile Defense Organization. 1994 Report to the congress on ballistic missile defense[R]. Washington, D.C., July, 1994.
    [39] 兰竹, 郑坤, 常晋聃. 弹道中段雷达目标特征仿真[J]. 电子信息对抗技术, 2014, 29(3): 51-57. Lan Z, Zheng K, and Chang J D. Simulation on radar target feature in ballistic midcourse[J]. Electronic Information Warfare Technology, 2014, 29(3): 51-57.
    [40] Imam N, Barhen J, and Glover C W. Optimum sensors integration for multi-sensor multi-target environment for ballistic missile defense applications[C]. 2012 IEEE International Systems Conference, Vancouver, Canada, 2012: 319-322.
    [41] Pan X Y, Wang W, Liu J, et al.. Modulation effect and inverse synthetic aperture radar imaging of rotationally symmetric ballistic targets with precession[J]. IET Radar Sonar Navigation, 2013, 7(9): 950-958.
    [42] Victoria S. American Missile Defense [M]. California: United States of America, 2010: 44-78.
    [43] Massachusetts Institute of Technology, Lincoln Laboratory. MIT Lincoln Laboratory Annual Report 2011[R]. Lexington, MA, 2011: 22-23.
    [44] Smith G E. Radar target micro-Doppler signature classification[D]. [Ph. D. dissertation, Department of Electronic and Electrical Engineering, University College London, 2008.
    [45] Yessad D, Amrouche A, Debyeche M, et al.. Micro-Doppler Classification for Ground Surveillance Radar Using Speech Recognition Tools[J]. Lecture Notes in Computer Science, 2011, 7042: 288-295.
    [46] 韩勋, 杜兰, 刘宏伟. 基于窄带雷达组网的空间锥体目标特征提取方法[J]. 电子与信息学报, 2014, 36(12): 2956-2962. Han X, Du L, and Liu H W. Feature extraction of space cone-shaped target based on narrow-band radar network[J]. Journal of Electronics Information Technology, 2014, 36(12): 2956-2962.
    [47] 向道朴. 微多普勒回波模拟与微动特征提取技术研究[D]. [博士论文],国防科学技术大学, 2010: 95-111. Xiang D P. Research on micro-Doppler echo simulation and micro-motion signature extraction technology[D]. [Ph. D. dissertation], National University of Defense Technology, 2010: 95-111.
    [48] Wang Q, Xing M D, Lu G Y, et al.. High-resolution three-dimensional radar imaging for rapidly spinning targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 22-30.
    [49] Ai X F, Zou X H, Li Y Z, et al.. Bistatic scattering centres of cone-shaped targets and target length estimation[J]. SCIENCE CHINA Information Sciences, 2012, 55(12): 2888-2898.
    [50] Pan M, Du L, Wang P H, et al.. Noise-robust modification method for Gaussian-based models with application to radar HRRP recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 558-562.
    [51] He S S, Zhou J X, Zhao H Z, et al.. Analysis and extraction of stepped frequency radar signature for micro-motion structure[J]. IET Radar, Sonar Navigation, 2009, 3(5): 484-492.
    [52] Smith G E, Woodbridge K, Baker C J, et al.. Multistatic micro-Doppler radar signatures of personnel targets[J]. IET Signal Processing, 2010, 4(3): 224-233.
    [53] Vespe M, Baker C, and Griffiths H. Radar target classification using multiple perspectives[J]. IET Radar, Sonar Navigation, 2007, 1(4): 300-307.
    [54] Liao X, Runkle P, Jiao Y, et al.. Identification of ground targets from sequential HRR radar signatures[C]. Proceedings 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, 2001, 5: 2897-2900.
    [55] 雷腾, 刘进忙, 杨少春, 等. 基于三站一维距离像融合的弹道目标特征提取方法研究[J]. 宇航学报, 2012, 33(2): 228-234. Lei T, Liu J M, Yang S C, et al.. Study on feature extraction method of ballistic target based on three-station range profiles[J]. Journal of Astronautics, 2012, 33(2): 228-234.
    [56] 宁超, 黄璟, 黄培康. 基于HRRP的进动锥体目标特征参数求解方法[J]. 系统工程与电子技术, 2014, 36(4): 650-655. Ning C, Huang J, and Huang P K. Solution for characteristic of precession cone-shaped target using HRRP[J]. Systems Engineering and Electronics, 2014, 36(4): 650-655.
    [57] He S S, Zhao H N, and Zhang Y S. Precession feature extraction for ballistic target based on networked high resolution radar[J]. Journal of Computational Information Systems, 2014, 10(17): 7349-7358.
    [58] 张栋, 冯存前, 贺思三, 等. 组网雷达弹道目标三维进动特征提取[J]. 西安电子科技大学学报, 2015, 42(2): 146-151. Zhang D, Feng C Q, He S S, et al.. Extraction of three-Dimensional precession features of ballistic targets in netted radar[J]. Journal of Xidian University, 2015, 42(2): 146-151.
    [59] Luo Y, Zhang Q, Yuan N, et al.. Three-Dimensional precession feature extraction of space targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1313-1329.
    [60] Li H J, Farhat N H, Shen Y, et al.. Image understanding and prediction in microwave diversity imaging[J]. IEEE Transactions on Antennas and Propagation, 1989, 37(8): 1048-1057.
    [61] August W Rihaczek and Stephen J, et al.. Theory and Practice of Radar Target Identification[M]. Hershkowitz [S.l.]: Artech House, 2000.
    [62] Ausherman D A, Kozma A, Walker J L, et al.. Developments in radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, 20(4): 363-399.
    [63] Cuomo K M, Piou J E, and Mayhan J T. Ultrawide-band coherent processing[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(6): 1097-1107.
    [64] Massachusetts Institute of Technology, Lincoln Laboratory. MIT Lincoln Laboratory Annual Report 2009[R]. Lexington, MA, 2009: 13-14.
    [65] Pastina D, Bucciarelli M, and Lombardo P. Multistatic and MIMO distributed ISAR for enhanced cross-range resolution of rotating targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(8): 3300-3317.
    [66] Suwa K, Wakayama T, and Iwamoto M. Three-dimensional target geometry and target motion estimation method using multistatic ISAR movies and its performance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2361-2373.
    [67] Ai X F, Huang Y, Zhao F, et al.. Imaging of spinning targets via narrow-band T/R-R bistatic radars[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 362-366.
    [68] 云日升. 多基站ISAR三维转动转台目标成像研究[J]. 电子与信息学报, 2010, 32(7): 1692-1696. Yun R S. Multi-static ISAR three-dimension turntable imaging and simulation[J]. Journal of Electronics Information Technology, 2010, 32(7): 1692-1696.
    [69] 王琦, 李亚超, 邢孟道, 等. 多视角ISAR成像研究[J]. 西安电子科技大学学报, 2007, 34(2): 165-169. Wang Q, Li Y C, Xing M D, et al.. A study of ISAR imaging of spatial diversity angles[J]. Journal of Xidian University, 2007, 34(2): 165-169.
    [70] Linde G. Use of wide-band waveforms for target recognition with surveillance radar[C]. The Record of the IEEE 2000 International Radar Conference, Washington D. C., USA, 2000: 128-133.
    [71] Camp W W, Mayhan J T, and ODonnell R M. Wideband radar for ballistic missile defense and range-Doppler imaging of satellites[J]. Lincoln Laboratory Journal, 2000, 12(2): 267-268.
    [72] 张群, 罗迎. 雷达目标微多普勒效应[M]. 北京: 国防工业出版社, 2013: 22-81. Zhang Q and Luo Y. Micro-Doppler Effect of Radar Targets[M]. Beijing: National Defense Industry Press, 2013: 22-81.
    [73] Maurer D E, Schirmer R W, Kalandros M K, et al.. Sensor fusion architectures for ballistic missile defense[J]. Johns Hopkins APL Technical Digest, 2006, 27(1): 19-31.
  • 加载中
计量
  • 文章访问数:  2565
  • HTML全文浏览量:  650
  • PDF下载量:  1322
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-03
  • 修回日期:  2015-11-17

目录

    /

    返回文章
    返回