[1] |
Du L, Wang P, Liu H, et al.. Bayesian spatiotemporal multitask learning for radar HRRP target recognition[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3182-3196.
|
[2] |
Shi L, Wang P, Liu H, et al.. Radar HRRP statistical recognition with local factor analysis by automatic Bayesian Ying Yang harmony learning[C]. IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Dallas Texas USA, 2010: 1878-1881.
|
[3] |
Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
|
[4] |
Baraniuk R and Steeghs P. Compressive radar imaging[C]. IEEE Radar Conference, Boston, Apr. 2007: 128-133.
|
[5] |
Ender J H G. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5): 1402-1414.
|
[6] |
Xie X C and Zhang Y H. High-resolution imaging of moving train by ground-based radar with compressive sensing[J]. Electronics Letters, 2010, 46(7): 529-531.
|
[7] |
Hereman M and Strohmer T. High-resolution radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275-2284.
|
[8] |
Patel V M, Easley G R, Healy D M, et al.. Compressed synthetic aperture radar[J]. IEEE Journal of Selected Topics on Signal Processing, 2010, 4(2): 244-254.
|
[9] |
Devore R A. Deterministic construction of compressed sensing matrices[J]. Journal of Complexity, 2013, 23(4): 918-925.
|
[10] |
Ni K and Datta S. Efficient deterministic compressed sensing for images with chirps and reed-muller codes[J]. SIAM Journal on Imaging Sciences, 2011, 4(3): 931-953.
|
[11] |
Li S X, Gao F, Ge G N, et al.. Deterministic construction of compressed sensing matrices via algebraic curves[J]. IEEE Transactions on Information Theory, 2012, 58(8): 5035-5041.
|
[12] |
Abolghasemi V, Ferdowsi S, and Sanei S. A gradient-based alternating minimization approach for optimization of the measurement matrix in compressive sensing[J]. Signal Processing, 2012, 92(3): 999-1009.
|
[13] |
Donoho D L and Tsaig Y. Sparse solution of underdetermined systems of linear equations by stage wise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121.
|
[14] |
Baraniukr, Cevher V, Duarte M, et al.. Model-based compressive sensing[J]. IEEE Transactions on Information Theory, 2010, 56(4): 1982-2001.
|
[15] |
Asaeia, Golbabaee M, Bourlard H, et al.. Structured sparsity models for reverberant speech separation[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2014, 22(3): 620-633.
|
[16] |
Yuan M and Liu Y. Model selection and estimation in regression with grouped variables[J]. Journal of the Royal Statistical Society Series B, 2006, 68(1): 49-67.
|
[17] |
Sun H, Zhang Z L, and Yu L. From sparseity to structured sparsity: Bayesian perspective[J]. Signal Processing, 2012, 28(6): 760-773 (in Chinese).
|
[18] |
孙洪, 张智林, 余磊. 从稀疏到结构化稀疏: 贝叶斯方法[J]. 信号处理, 2012, 28(6): 760-773. Zhang Z L and Rao B D. Recovery of block sparse signals using the framework of block sparse Bayesian learning[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, Mar. 2012: 3345-3348.
|
[19] |
Zhang Z L and Rao B D. Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation[J]. IEEE Transactions on Signal Processing, 2012, 61(8): 2009-2015.
|
[20] |
Babacan S D, Nakajima S, and Do M N. Bayesian group-sparse modeling and variational inference[J]. IEEE Transactions on Signal Processing, 2014, 62(11): 2906-2921.
|
[21] |
Liu B Y, Zhang Z L, Xu G, et al.. Energy efficient telemonitoring of physiological signals via compressed sensing: a fast algorithm and power consumption evaluation[J]. Biomedical Signal Processing and Control, 2014, 11(1): 80-88.
|
[22] |
Shen Y, Duan H, Fang J, et al.. Pattern-coupled sparse bayesian learning for recovery of block-sparse signals[J]. IEEE Transactions on Signal Processing, 2013, 63(2): 1896-1900.
|
[23] |
Zhong J R, Wen G J, and Ma C H. Radar signal reconstruction algorithm based on complex block sparse Bayesian learning[C]. 12th International Conference on Signal Processing, Hangzhou, China, Oct. 2014: 1930-1933.
|
[24] |
Davies M E and Gribonval R. Restricted isometry constants where lp sparse recovery can fail for 0[25] Wipf D P and Rao B D. Sparse Bayesian learning for basis selection[J]. IEEE Transactions on Signal Processing, 2004, 52(8): 2153-2164.
|
[25] |
Potter L C and Moses R L. Attributed scattering centers for SAR ATR[J]. IEEE Transactions on Image Processing, 1997, 6(1): 79-91.
|
[26] |
Potter L C, Chiang D M, Carriere R, el al.. A GTD-based parametric model for radar scattering[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(10): 1058-1066.
|
[27] |
Eldar Y C, Kuppinger P, and Bolcskei H. Block-sparse signals: uncertainty relations and efficient recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3042-3054.
|
[28] |
Eldar Y C and Mishali M. Robust recovery of signals from a structured union of subspaces[J]. IEEE Transactions on Information Theory, 2009, 55(11): 5302-5316.
|
[29] |
Huang J Z and Zhang T. METAXAS D. Learning with dynamic structured sparsity[J]. Journal of Machine Learning Research, 2012, 12(7): 3371-3412.
|
[30] |
Yu L, Sun H, Barbot J P, et al.. Bayesian compressive sensing for cluster structured sparse signals[J]. Signal Processing, 2012, 92(1): 259-269.
|
[31] |
Peleg T, Eldar Y and Elad M. Exploiting statistical dependencies in sparse representations for signalrecovery[J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2286-2303.
|
[32] |
Steven M. K. Fundamentals of Statistical Signal Processing Volume I: Estimation Theory[M]. Englewood Cliffs, NJ, USA, Prentice Hall, IInc., 1993: 493-567. 罗鹏飞, 张文明等译. 统计信号处理基础估计与检测理论[M].北京: 电子工业出版社, 2006: 397-440.
|