[1] |
Withington P, Fluhler H, and Nag S. Enhancing homeland security with advanced UWB sensors[J]. IEEE Microwave Magazine, 2003, 4(3): 51-58.
|
[2] |
Chen K, Zhang J, Norman A, et al.. An X-band microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier[J]. IEEE Transactions on Biomedical Engineering, 2000, 47(1): 105-114.
|
[3] |
Barnes M A, Nag S, and Payment T. Covert situational awareness with handheld ultra-wideband short pulse radar[J]. SPIE, 2001, 4374: 66-77.
|
[4] |
Nag S and Barnes M. A moving target detection filter for an ultra-wideband radar[C]. Proceedings of the 2003 IEEE Radar Conference, Huntsville, 2003: 147-153.
|
[5] |
Xu Y, Dai S, Wu S, et al.. Vital sign detection method based on multiple higher order cumulant for ultrawideband radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4): 1254-1265.
|
[6] |
谢义方, 方广有. 基于无载频脉冲雷达信号等幅度追踪法检测 生命信号[J]. 电子与信息学报, 2009, 31(5): 1132-1135. Xie Yi-fang and Fang Guang-you. Equi-amplitude tracing algorithm based on base-band pulse signal in vital signal detecting[J]. Journal of Electronics Information Technology, 2009, 31(5): 1132-1135.
|
[7] |
戴舜, 方广有. 超宽带雷达生命信号频率检测的 Cramer- Rao下界[J]. 电子与信息学报, 2011, 33(3): 701-705. Dai Shun and Fang Guang-you. Cramer-Rao lower bound of vital signal frequency detection for ultra wideband radar[J]. Journal of Electronics Information Technology, 2011, 33(3): 701-705.
|
[8] |
邵金进, 纪奕才, 方广有, 等. 一种用于生命探测雷达的超宽带 天线[J]. 电子与信息学报, 2014, 36(2): 471-475. Shao Jin-jin, Ji Yi-cai, Fang Guang-you, et al.. An ultrawideband antenna for life detection radar[J]. Journal of Electronics Information Technology, 2014, 36(2): 471-475.
|
[9] |
贺峰, 朱国富, 牟妙辉, 等. 超宽带穿墙雷达对人体动目标探测 的实验研究[J]. 现代雷达, 2010, 32(7): 29-33.
|
[10] |
He Feng, Zhu Guo-fu, Mou Miao-hui, et al.. Experiment study of life locomotion detection based on ultra-wideband through wall radar[J]. Modern Radar, 2010, 32(7): 29-33. Li Y, Jing X, L H, et al.. Analysis of characteristics of two close stationary human targets detected by impulse radio UWB radar[J]. Progress In Electromagnetics Research, 2012, 126: 429-447.
|
[11] |
Li Z, Li W, L H, et al.. A novel method for respiration-like clutter cancellation in life detection by dual-frequency IRUWB radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(5): 2086-2092.
|
[12] |
Xu Y, Wu S, Chen C, et al.. A novel method for automatic detection of trapped victims by ultrawideband radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(8): 3132-3142.
|
[13] |
Rial F I, Lorenzo H, Novo A, et al.. Checking the signal stability in GPR systems and antennas[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(4): 785-790.
|
[14] |
Liu Q, Wang Y, and Fathy A E. Towards low cost, high speed data sampling module for multifunctional real-time UWB radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1301-1316.
|
[15] |
Wang Y, Zhang Q Y, and Yang Z H. A novel method of timing jitter suppression based on UWB system[C]. 2009 International Conference on Wireless Communications Networking and Mobile Computing, Beijing, 2005: 1-5.
|
[16] |
张斓子, 陆必应, 周智敏, 等. 基于因子分析法和图像对比度的 穿墙雷达杂波抑制[J]. 电子与信息学报, 2013, 35(11): 2686-2692. Zhang Lan-zi, Lu Bi-ying, Zhou Zhi-min, et al.. The clutter suppression based on factor analysis and image contrast in through-the-wall application[J]. Journal of Electronics Information Technology, 2013, 35(11): 2686-2692.
|
[17] |
Hu J, Zhu G, Jin T, et al.. Study on timing jitter in clutter mitigation of through-wall human indication[C]. 2013 IEEE International Conference on Ultra-WideBand (ICUWB), Sydney, Australia, 2013: 211-214.
|
[18] |
Li W Z, Li Z, L H, et al.. A new method for non-line-ofsight vital sign monitoring based on developed adaptive line enhancer using low centre frequency UWB radar[J]. Progress In Electromagnetics Research, 2013, 133: 535-554.
|
[19] |
L H, Lu G H, Jing X J, et al.. A new ultra-wideband radar for detecting survivors buried under earthquake rubbles[J]. Microwave and Optical Technology Letters, 2010, 52(11): 2621-2624.
|