| Citation: | LIU Ziyuan, WANG Shaoping, HE Yiting, GU Yuantao. A MultiTask Motion Information Extraction Method Based on Range-Doppler Maps for Near-vertical Scenarios[J]. Journal of Radars. doi: 10.12000/JR25259 |
| [1] |
MILLER S D, MWAFFO V, and COSTELLO III D H. Deep learning-based relative bearing estimation between naval surface vessels and uas in challenging maritime environments[C]. 2025 International Conference on Unmanned Aircraft Systems (ICUAS), Charlotte, USA, 2025: 742–748. doi: 10.1109/ICUAS65942.2025.11007882.
|
| [2] |
毛军, 付浩, 褚超群, 等. 惯性/视觉/激光雷达SLAM技术综述[J]. 导航定位与授时, 2022, 9(4): 17–30. doi: 10.19306/j.cnki.2095-8110.2022.04.003.
MAO Jun, FU Hao, CHU Chaoqun, et al. A review of simultaneous localization and mapping based on inertial-visual-lidar fusion[J]. Navigation Positioning and Timing, 2022, 9(4): 17–30. doi: 10.19306/j.cnki.2095-8110.2022.04.003.
|
| [3] |
NARASIMHAPPA M, MAHINDRAKAR A D, GUIZILINI V C, et al. MEMS-based IMU drift minimization: Sage Husa adaptive robust Kalman filtering[J]. IEEE Sensors Journal, 2020, 20(1): 250–260. doi: 10.1109/JSEN.2019.2941273.
|
| [4] |
李道京, 朱宇, 胡烜, 等. 衍射光学系统的激光应用和稀疏成像分析[J]. 雷达学报, 2020, 9(1): 195–203. doi: 10.12000/JR19081.
LI Daojing, ZHU Yu, HU Xuan, et al. Laser application and sparse imaging analysis of diffractive optical system[J]. Journal of Radars, 2020, 9(1): 195–203. doi: 10.12000/JR19081.
|
| [5] |
王超, 王岩飞, 刘畅, 等. 基于参数估计的高分辨率SAR运动目标距离徙动校正方法[J]. 雷达学报, 2019, 8(1): 64–72. doi: 10.12000/JR18054.
WANG Chao, WANG Yanfei, LIU Chang, et al. A new approach to range cell migration correction for ground moving targets in high-resolution SAR system based on parameter estimation[J]. Journal of Radars, 2019, 8(1): 64–72. doi: 10.12000/JR18054.
|
| [6] |
许京新. 基于深度学习的SAR图像舰船目标检测[D]. [硕士论文], 烟台大学, 2025. doi: 10.27437/d.cnki.gytdu.2025.000610.
XU Jingxin. Deep learning-based ship target detection in SAR images[D]. [Master dissertation], Yantai University, 2025. doi: 10.27437/d.cnki.gytdu.2025.000610.
|
| [7] |
DE HOOP M V, LASSAS M, and WONG C A. Deep learning architectures for nonlinear operator functions and nonlinear inverse problems[J]. Mathematical Statistics and Learning, 2022, 4(1/2): 1–86. doi: 10.4171/MSL/28.
|
| [8] |
DARA S and TUMMA P. Feature extraction by using deep learning: A survey[C]. 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 2018: 1795–1801. doi: 10.1109/ICECA.2018.8474912.
|
| [9] |
KWON H Y, YOON H G, LEE C, et al. Magnetic Hamiltonian parameter estimation using deep learning techniques[J]. Science Advances, 2020, 6(39): eabb0872. doi: 10.1126/sciadv.abb0872.
|
| [10] |
KOLLIAS D. ABAW: Learning from synthetic data & multi-task learning challenges[C]. European Conference on Computer Vision, Tel Aviv, Israel, 2023: 157–172. doi: 10.1007/978-3-031-25075-0_12.
|
| [11] |
CIPOLLA R, GAL Y, and KENDALL A. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7482–7491. doi: 10.1109/CVPR.2018.00781.
|
| [12] |
RICHARDS M A and MELVIN W L. Principles of Modern Radar: Basic Principles[M]. London: The Institution of Engineering and Technology, 2022: 360.
|
| [13] |
WANG Aiguo, ZHANG Wei, and CAO Jianshu. Terrain clutter modeling for airborne radar system using digital elevation model[C]. The 2012 International Workshop on Microwave and Millimeter Wave Circuits and System Technology, Chengdu, China, 2012: 1–4. doi: 10.1109/MMWCST.2012.6238182.
|
| [14] |
IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. The 32nd International Conference on International Conference on Machine Learning, Lille, France, 2015: 448–456.
|
| [15] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification[C]. The IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1026–1034. doi: 10.1109/ICCV.2015.123.
|
| [16] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
| [17] |
ABDULATIF S, CAO Ruizhe, and YANG Bin. CMGAN: Conformer-based metric-GAN for monaural speech enhancement[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2024, 32: 2477–2493. doi: 10.1109/TASLP.2024.3393718.
|
| [18] |
RUDER S. An overview of multi-task learning in deep neural networks[J]. arXiv preprint arXiv: 1706.05098, 2017. doi: 10.48550/arXiv.1706.05098.
|