| Citation: | JIANG Meiqiu, LUO Haolan, GUO Shisheng, et al. Indoor target tracking method for millimeter-wave radar based on multipath extension mapping[J]. Journal of Radars, in press. doi: 10.12000/JR25245 |
| [1] |
ZHANG Jia, XI Rui, HE Yuan, et al. A survey of mmWave-based human sensing: Technology, platforms and applications[J]. IEEE Communications Surveys & Tutorials, 2023, 25(4): 2052–2087. doi: 10.1109/COMST.2023.3298300.
|
| [2] |
SOUMYA A, KRISHNA MOHAN C, and CENKERAMADDI L R. Recent advances in mmWave-radar-based sensing, its applications, and machine learning techniques: A review[J]. Sensors, 2023, 23(21): 8901. doi: 10.3390/s23218901.
|
| [3] |
CUI Han and DAHNOUN N. High precision human detection and tracking using millimeter-wave radars[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(1): 22–32. doi: 10.1109/MAES.2020.3021322.
|
| [4] |
GRANSTRÖM K, BAUM M, and REUTER S. Extended object tracking: Introduction, overview and applications[EB/OL]. https://doi.org/10.48550/arXiv.1604.00970, 2016.
|
| [5] |
JIANG Meiqiu, GUO Shisheng, LUO Haolan, et al. A robust target tracking method for crowded indoor environments using mmWave radar[J]. Remote Sensing, 2023, 15(9): 2425. doi: 10.3390/rs15092425.
|
| [6] |
SHAMSFAKHR F, MACII D, PALOPOLI L, et al. A multi-target detection and position tracking algorithm based on mmWave-FMCW radar data[J]. Measurement, 2024, 234: 114797. doi: 10.1016/j.measurement.2024.114797.
|
| [7] |
HUANG Xu, CHEENA H, THOMAS A, et al. Indoor detection and tracking of people using mmWave sensor[J]. Journal of Sensors, 2021, 2021(1): 6657709. doi: 10.1155/2021/6657709.
|
| [8] |
LI Shenglei and HISHIYAMA R. An indoor people counting and tracking system using mmWave sensor and sub-sensors[J]. IFAC-PapersOnLine, 2023, 56(2): 7096–7101. doi: 10.1016/j.ifacol.2023.10.577.
|
| [9] |
SVENSSON L, SVENSSON D, GUERRIERO M, et al. Set JPDA filter for multitarget tracking[J]. IEEE Transactions on Signal Processing, 2011, 59(10): 4677–4691. doi: 10.1109/TSP.2011.2161294.
|
| [10] |
TEXAS Instruments Inc. Tracking radar targets with multiple reflection points[EB/OL]. https://dev.ti.com/tirex/explore/node?isTheia=false&node=A__AObLJnMJzRrRFRE5nTbQ1g__radar_toolbox__1AslXXD__2.20.00.05&placeholder=true, 2023.
|
| [11] |
LAN Jian. Extended object tracking using random matrix with extension-dependent measurement numbers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4464–4477. doi: 10.1109/TAES.2023.3241888.
|
| [12] |
HAAG S, DURAISAMY B, GOVAERS F, et al. Extended object tracking assisted adaptive clustering for radar in autonomous driving applications[C]. 2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn, Germany, 2019: 1–7. doi: 10.1109/SDF.2019.8916658.
|
| [13] |
BAUM M and HANEBECK U D. Extended object tracking with random hypersurface models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 149–159. doi: 10.1109/TAES.2013.120107.
|
| [14] |
BAUM M, NOACK B, and HANECK U D. Extended object and group tracking with elliptic random hypersurface models[C]. 2010 13th International Conference on Information Fusion, Edinburgh, UK, 2010: 1–8. doi: 10.1109/ICIF.2010.5711854.
|
| [15] |
CAO Xiaomeng, LAN Jian, LI X R, et al. Automotive radar-based vehicle tracking using data-region association[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 8997–9010. doi: 10.1109/TITS.2021.3089676.
|
| [16] |
CAO Xiaomeng, LAN Jian, LIU Yushuang, et al. Tracking of rectangular object using key points with regionally concentrated measurements[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(6): 5312–5327. doi: 10.1109/TITS.2023.3332606.
|
| [17] |
HAO Zhanjun, YAN Hao, DANG Xiaochao, et al. Millimeter-wave radar localization using indoor multipath effect[J]. Sensors, 2022, 22(15): 5671. doi: 10.3390/s22155671.
|
| [18] |
COPA E I P, AZIZ K, RYKUNOV M, et al. Radar fusion for multipath mitigation in indoor environments[C]. 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020: 1–5. doi: 10.1109/RadarConf2043947.2020.9266697.
|
| [19] |
LIU Chenwen, LIU Shengheng, ZHANG Cheng, et al. Multipath propagation analysis and ghost target removal for FMCW automotive radars[C]. IET International Radar Conference (IET IRC 2020), Chongqing, China, 2020: 330–334. doi: 10.1049/icp.2021.0554.
|
| [20] |
FENG Ruoyu, DE GREEF E, RYKUNOV M, et al. Multipath ghost recognition for indoor MIMO radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5104610. doi: 10.1109/TGRS.2021.3109381.
|
| [21] |
PARK J K, PARK J H, and KIM K T. Multipath signal mitigation for indoor localization based on MIMO FMCW radar system[J]. IEEE Internet of Things Journal, 2024, 11(2): 2618–2629. doi: 10.1109/JIOT.2023.3292349.
|
| [22] |
LUO Haolan, ZHU Zhihao, JIANG Meiqiu, et al. An effective multipath ghost recognition method for sparse MIMO radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5111611. doi: 10.1109/TGRS.2023.3335454.
|
| [23] |
LI Yunda and SHANG Xiaolei. Multipath ghost target identification for automotive MIMO radar[C]. 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), London, United Kingdom, 2022: 1–5. doi: 10.1109/VTC2022-Fall57202.2022.10012904.
|
| [24] |
GARCIA J M, PROPHET R, MICHEL J C F, et al. Identification of ghost moving detections in automotive scenarios with deep learning[C]. 2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Detroit, USA, 2019: 1–4. doi: 10.1109/ICMIM.2019.8726704.
|
| [25] |
FENG Ruoyu, DE GREEF E, RYKUNOV M, et al. Multipath ghost classification for MIMO radar using deep neural networks[C]. 2022 IEEE Radar Conference (RadarConf22), New York City, USA, 2022: 1–6. doi: 10.1109/RadarConf2248738.2022.9764274.
|
| [26] |
PULFORD G W and EVANS R J. A multipath data association tracker for over-the-horizon radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(4): 1165–1183. doi: 10.1109/7.722704.
|
| [27] |
PULFORD G W and LA SCALA B F. Multihypothesis Viterbi data association: Algorithm development and assessment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 583–609. doi: 10.1109/TAES.2010.5461643.
|
| [28] |
HABTEMARIAM B, THARMARASA R, THAYAPARAN T, et al. A multiple-detection joint probabilistic data association filter[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 461–471. doi: 10.1109/JSTSP.2013.2256772.
|
| [29] |
CHEN Weiyan, YANG Hongliu, BI Xiaoyang, et al. Environment-aware multi-person tracking in indoor environments with mmWave radars[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2023, 7(3): 89. doi: 10.1145/3610902.
|
| [30] |
FENG Ruoyu, DE GREEF E, RYKUNOV M, et al. Multipath ghost recognition and joint target tracking with wall estimation for indoor MIMO radar[J]. IEEE Transactions on Radar Systems, 2024, 2: 154–164. doi: 10.1109/TRS.2024.3354509.
|
| [31] |
CHENG Qiaoling, YANG Zhaocheng, CHU Ping, et al. Space boundary-aware people tracking and counting method using MIMO radar[J]. IEEE Sens. J., 2025, 25(14): 27209–27220. doi: 10.1109/JSEN.2025.3577228.
|
| [32] |
LIAN Tongsheng, CHU Ping, YANG Zhaocheng, et al. Indoor multi-target tracking exploiting target motion characteristics and prior boundary knowledge using multiple-input multiple-output radar[J]. Chinese Journal of Electronics, 2025, 34(6): 1767–1777. doi: 10.23919/cje.2024.00.165.
|
| [33] |
TUNCER B and ÖZKAN E. Random matrix based extended target tracking with orientation: A new model and inference[J]. IEEE Transactions on Signal Processing, 2021, 69: 1910–1923. doi: 10.1109/TSP.2021.3065136.
|
| [34] |
JIANG Meiqiu, LUO Haolan, GUO Shisheng, et al. Indoor human tracking with 3-D expansion estimation based on mmWave radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(6): 16647–16665. doi: 10.1109/TAES.2025.3595827.
|
| [35] |
TAO Ding, ANFINSEN S N, and BREKKE C. Robust CFAR detector based on truncated statistics in multiple-target situations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 117–134. doi: 10.1109/TGRS.2015.2451311.
|
| [36] |
WOLFEL M and MCDONOUGH J. Minimum variance distortionless response spectral estimation[J]. IEEE Signal Processing Magazine, 2005, 22(5): 117–126. doi: 10.1109/MSP.2005.1511829.
|
| [37] |
SCHUBERT E, SANDER J, ESTER M, et al. DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN[J]. ACM Transactions on Database Systems, 2017, 42(3): 19. doi: 10.1145/3068335.
|
| [38] |
FELDMANN M, FRÄNKEN D, and KOCH W. Tracking of extended objects and group targets using random matrices[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1409–1420. doi: 10.1109/TSP.2010.2101064.
|
| [39] |
SEDEHI M, LOMBARDO P, and FARINA A. A modified M/N logic for track initiation of low observable targets using amplitude information[C]. 2006 International Radar Symposium (IRS), Kraków, Poland, 2006: 1–4. doi: 10.1109/IRS.2006.4338080.
|
| [40] |
Texas Instruments Inc. 60GHz mmWave sensor EVMs[EB/OL]. https://www.ti.com/lit/ug/swru546e/swru546e.pdf, 2022.
|
| [41] |
Texas Instruments Inc. DCA1000EVM data capture card[EB/OL]. https://www.ti.com.cn/cn/lit/pdf/spruij4, 2019.
|