| Citation: | CHEN Xiaolong, LIU Jia, WANG Xinghai, et al. Digital array radar lss-target detection dataset (LSS-DAUR-1.0) and graph network-based target classification[J]. Journal of Radars, in press. doi: 10.12000/JR25240 |
| [1] |
陈小龙, 陈唯实, 饶云华, 等. 飞鸟与无人机目标雷达探测与识别技术进展与展望[J]. 雷达学报, 2020, 9(5): 803–827. doi: 10.12000/JR20068.
CHEN Xiaolong, CHEN Weishi, RAO Yunhua, et al. Progress and prospects of radar target detection and recognition technology for flying birds and unmanned aerial vehicles[J]. Journal of Radars, 2020, 9(5): 803–827. doi: 10.12000/JR20068.
|
| [2] |
郭瑞, 张月, 田彪, 等. 全息凝视雷达系统技术与发展应用综述[J]. 雷达学报, 2023, 12(2): 389–411. doi: 10.12000/JR22153.
GUO Rui, ZHANG Yue, TIAN Biao, et al. Review of the technology, development and applications of holographic staring radar[J]. Journal of Radars, 2023, 12(2): 389–411. doi: 10.12000/JR22153.
|
| [3] |
JAHANGIR M and BAKER C J. L-band staring radar performance against micro-drones[C]. 2018 19th International Radar Symposium, Bonn, Germany, 2018: 1–10. doi: 10.23919/IRS.2018.8448107.
|
| [4] |
BENNETT C, JAHANGIR M, FIORANELLI F, et al. Use of symmetrical peak extraction in drone micro-Doppler classification for staring radar[C]. 2020 IEEE Radar Conference, Florence, Italy, 2020: 1–6. doi: 10.1109/RadarConf2043947.2020.9266702.
|
| [5] |
JAHANGIR M, ATKINSON G M, ANTONIOU M, et al. Measurements of birds and drones with L-band staring radar[C]. 2021 21st International Radar Symposium, Berlin, Germany, 2021: 1–10. doi: 10.23919/IRS51887.2021.9466224.
|
| [6] |
GRIFFIN B, BALLERI A, BAKER C, et al. Prototyping a dual-channel receiver for use in a staring cooperative radar network for the detection of drones[C]. 2021 21st International Radar Symposium, Berlin, Germany, 2021: 1–7. doi: 10.23919/IRS51887.2021.9466221.
|
| [7] |
徐世友, 戴婷, 陈曾平. 基于多维特征的全息雷达“低慢小”目标识别[J]. 现代雷达, 2022, 44(11): 1–9. doi: 10.16592/j.cnki.1004-7859.2022.11.001.
XU Shiyou, DAI Ting, and CHEN Zengping. LSS target recognition in holographic radar based on multi-dimensional features[J]. Modern Radar, 2022, 44(11): 1–9. doi: 10.16592/j.cnki.1004-7859.2022.11.001.
|
| [8] |
陈小龙, 黄勇, 关键, 等. MIMO雷达微弱目标长时积累技术综述[J]. 信号处理, 2020, 36(12): 1947–1964. doi: 10.16798/j.issn.1003-0530.2020.12.001.
CHEN Xiaolong, HUANG Yong, GUAN Jian, et al. Review of long-time integration techniques for weak targets using MIMO radar[J]. Journal of Signal Processing, 2020, 36(12): 1947–1964. doi: 10.16798/j.issn.1003-0530.2020.12.001.
|
| [9] |
贺治华, 段佳, 芦达. 雷达海面目标识别技术研究进展[J]. 科技导报, 2017, 35(20): 61–68. doi: 10.3981/j.issn.1000-7857.2017.20.006.
HE Zhihua, DUAN Jia, and LU Da. A review of radar sea target recognition technology[J]. Science & Technology Review, 2017, 35(20): 61–68. doi: 10.3981/j.issn.1000-7857.2017.20.006.
|
| [10] |
田凯祥, 于恒力, 王中训, 等. 基于雷达目标特征可分性的一维特征选择方法[J]. 海军航空大学学报, 2024, 39(4): 453–460,500. doi: 10.7682/j.issn.2097-1427.2024.04.007.
TIAN Kaixiang, YU Hengli, WANG Zhongxun, et al. One-dimensional feature selection method based on radar target feature divisibility[J]. Journal of Naval Aviation University, 2024, 39(4): 453–460,500. doi: 10.7682/j.issn.2097-1427.2024.04.007.
|
| [11] |
KUMAWAT H C, CHAKRABORTY M, RAJ A A B, et al. DIAT-μSAT: Small aerial targets’ micro-Doppler signatures and their classification using CNN[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 6004005. doi: 10.1109/LGRS.2021.3102039.
|
| [12] |
PARK D, LEE S, PARK S, et al. Radar-spectrogram-based UAV classification using convolutional neural networks[J]. Sensors, 2021, 21(1): 210. doi: 10.3390/s21010210.
|
| [13] |
苏宁远, 陈小龙, 关键, 等. 基于卷积神经网络的海上微动目标检测与分类方法[J]. 雷达学报, 2018, 7(5): 565–574. doi: 10.12000/JR18077.
SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Detection and classification of maritime target with micro-motion based on CNNs[J]. Journal of Radars, 2018, 7(5): 565–574. doi: 10.12000/JR18077.
|
| [14] |
WANG Jinhao, CHEN Xiaolong, GUAN Jian, et al. A time-frequency representation method based on ETF-MDNet for radar target micro-motion features[J]. Chinese Journal of Electronics, 2025, 34(4): 1199–1208. doi: 10.23919/cje.2024.00.233.
|
| [15] |
YU Xiaojie, WEI Song, FANG Yuyuan, et al. Low-altitude slow small target threat assessment algorithm by exploiting sequential multifeature with long short-term memory[J]. IEEE Sensors Journal, 2023, 23(18): 21524–21533. doi: 10.1109/JSEN.2023.3301090.
|
| [16] |
ZHU J, CHEN H and YE W. A hybrid CNN–LSTM network for the classification of human activities based on micro-Doppler radar[J]. IEEE Access, 2020, 8: 24713–24720. doi: 10.1109/ACCESS.2020.2971064.
|
| [17] |
SONG Qiang, HUANG Shilin, ZHANG Yue, et al. Radar target classification using enhanced Doppler spectrograms with ResNet34_CA in ubiquitous radar[J]. Remote Sensing, 2024, 16(15): 2860. doi: 10.3390/rs16152860.
|
| [18] |
WU Qi, CHEN Jie, LU Yue, et al. A complete automatic target recognition system of low altitude, small RCS and slow speed (LSS) targets based on multi-dimensional feature fusion[J]. Sensors, 2019, 19(22): 5048. doi: 10.3390/s19225048.
|
| [19] |
YUAN Wang, CHEN Xiaolong, DU Xiaolin, et al. A low slow small target classification network model based on K-band radar dynamic multifeature data fusion[J]. IEEE Sensors Journal, 2025, 25(1): 1656–1668. doi: 10.1109/JSEN.2024.3496493.
|
| [20] |
陈小龙, 袁旺, 杜晓林, 等. 多波段多角度FMCW雷达低慢小探测数据集(LSS-FMCWR-2.0)及特征融合分类方法[J]. 雷达学报(中英文), 2025, 14(5): 1276–1293. doi: 10.12000/JR25004.
CHEN Xiaolong, YUAN Wang, DU Xiaolin, et al. Multi-band multi-angle FMCW radar low-slow-small target detection dataset (LSS-FMCWR-2.0) and feature fusion classification methods[J]. Journal of Radars, 2025, 14(5): 1276–1293. doi: 10.12000/JR25004.
|
| [21] |
赵子健, 许述文, 水鹏朗. 基于多域雷达回波数据融合的海面小目标分类网络模型[J]. 电子与信息学报, 2025, 47(3): 696–706. doi: 10.11999/JEIT240818.
ZHAO Zijian, XU Shuwen, and SHUI Penglang. A network model for sea surface small targets classification based on multidomain radar echo data fusion[J]. Journal of Electronics & Information Technology, 2025, 47(3): 696–706. doi: 10.11999/JEIT240818.
|
| [22] |
何肖阳, 陈小龙, 杜晓林, 等. 基于CBAM-Swin-Transformer迁移学习的海上微动目标分类方法[J]. 系统工程与电子技术, 2025, 47(4): 1155–1167. doi: 10.12305/j.issn.1001-506X.2025.04.12.
HE Xiaoyang, CHEN Xiaolong, DU Xiaolin, et al. Classification of maritime micromotion target based on transfer learning in CBAM-Swin-Transformer[J]. Systems Engineering and Electronics, 2025, 47(4): 1155–1167. doi: 10.12305/j.issn.1001-506X.2025.04.12.
|
| [23] |
SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61–80. doi: 10.1109/TNN.2008.2005605.
|
| [24] |
KHEMANI B, PATIL S, KOTECHA K, et al. A review of graph neural networks: Concepts, architectures, techniques, challenges, datasets, applications, and future directions[J]. Journal of Big Data, 2024, 11(1): 18. doi: 10.1186/s40537-023-00876-4.
|
| [25] |
SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Maritime target detection based on radar graph data and graph convolutional network[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4019705. doi: 10.1109/LGRS.2021.3133473.
|
| [26] |
SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Radar Maritime Target detection via spatial–temporal feature attention graph convolutional network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5102615. doi: 10.1109/TGRS.2024.3358862.
|
| [27] |
Meng Han, Peng Yuexing, Wang Wenbo, et al. Spatio-temporal-frequency graph attention convolutional network for aircraft recognition based on heterogeneous radar network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5548–5559. doi: 10.48550/arXiv.2204.07360.
|
| [28] |
MENG Han, PENG Yuexing, XIANG Wei, et al. Semantic feature-enhanced graph attention network for radar target recognition in heterogeneous radar network[J]. IEEE Sensors Journal, 2023, 23(7): 6369–6377. doi: 10.1109/JSEN.2023.3250708.
|
| [29] |
CHEN Lingfeng, PAN Zhiliang, LIU Qi, et al. HRRPGraphNet++: Dynamic graph neural network with meta-learning for few-shot HRRP radar target recognition[J]. Remote Sensing, 2025, 17(12): 2108. doi: 10.3390/rs17122108.
|
| [30] |
MENG Han, PENG Yuexing, and WANG Wenbo. Dynamic graph network augmented by contrastive learning for radar target classification[C]. 2024 IEEE Radar Conference, Denver, USA, 2024: 1–6. doi: 10.1109/RadarConf2458775.2024.10548626.
|
| [31] |
LIN Huiping, XIE Zixuan, ZENG Liang, et al. Multi-scale time-frequency representation fusion network for target recognition in SAR imagery[J]. Remote Sensing, 2025, 17(16): 2786. doi: 10.3390/rs17162786.
|
| [32] |
CHEN Lingfeng, SUN Xiao, PAN Zhiliang, et al. HRRPGraphNet: Make HRRPs to be graphs for efficient target recognition[J]. Electronics Letters, 2024, 60(22): e70088. doi: 10.1049/ell2.70088.
|
| [33] |
WANG Ruiqiu, SU Tao, XU Dan, et al. MIGA-Net: Multi-view image information learning based on graph attention network for SAR target recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(11): 10779–10792. doi: 10.1109/TCSVT.2024.3418979.
|
| [34] |
陈小龙, 袁旺, 杜晓林, 等. 多波段FMCW雷达低慢小探测数据集(LSS-FMCWR-1.0)及高分辨微动特征提取方法[J]. 雷达学报(中英文), 2024, 13(3): 539–553. doi: 10.12000/JR23142.
CHEN Xiaolong, YUAN Wang, DU Xiaolin, et al. Multiband FMCW radar LSS-target detection dataset (LSS-FMCWR-1.0) and high-resolution micromotion feature extraction method[J]. Journal of Radars, 2024, 13(3): 539–553. doi: 10.12000/JR23142.
|
| [35] |
陈小龙, 饶桂林, 关键, 等. 被动雷达低慢小探测数据集(LSS-PR-1.0)及多域特征提取和分析方法[J]. 雷达学报(中英文), 2025, 14(2): 249–268. doi: 10.12000/JR24145.
CHEN Xiaolong, RAO Guilin, GUAN Jian, et al. Passive radar low slow small detection dataset (LSS-PR-1.0) and multi-domain feature extraction and analysis methods[J]. Journal of Radars, 2025, 14(2): 249–268. doi: 10.12000/JR24145.
|
| [36] |
邓振华, 陈小龙, 薛伟, 等. 海空背景下低慢小目标泛探雷达多域多维特征建模与分析[J]. 信号处理, 2024, 40(5): 801–814. doi: 10.16798/j.issn.1003-0530.2024.05.001.
DENG Zhenhua, CHEN Xiaolong, XUE Wei, et al. Multi-domain and multi-dimensional feature modeling and analysis of low, slow, and small targets via ubiquitous radar under sea and air background[J]. Journal of Signal Processing, 2024, 40(5): 801–814. doi: 10.16798/j.issn.1003-0530.2024.05.001.
|
| [37] |
LIU Huaiyuan, YANG Donghua, LIU Xianzhang, et al. TodyNet: Temporal dynamic graph neural network for multivariate time series classification[J]. Information Sciences, 2024, 677: 120914. doi: 10.1016/j.ins.2024.120914.
|
| [38] |
DUAN Ziheng, XU Haoyan, WANG Yueyang, et al. Multivariate time-series classification with hierarchical variational graph pooling[J]. Neural Networks, 2022, 154: 481–490. doi: 10.1016/j.neunet.2022.07.032.
|
| [39] |
YIN Yongqiang, ZHENG Xiangwei, HU Bin, et al. EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM[J]. Applied Soft Computing, 2021, 100: 106954. doi: 10.1016/j.asoc.2020.106954.
|
| [40] |
FENG Lin, CHENG Cheng, ZHAO Mingyan, et al. EEG-based emotion recognition using spatial-temporal graph convolutional LSTM with attention mechanism[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(11): 5406–5417. doi: 10.1109/JBHI.2022.3198688.
|