Turn off MathJax
Article Contents
JI Dezheng, CHEN Deyuan, ZHAO Bo, et al. A domain-adversarial wavelet residual network for crevasse detection using ground-penetrating radar[J]. Journal of Radars, in press. doi: 10.12000/JR25237
Citation: JI Dezheng, CHEN Deyuan, ZHAO Bo, et al. A domain-adversarial wavelet residual network for crevasse detection using ground-penetrating radar[J]. Journal of Radars, in press. doi: 10.12000/JR25237

A Domain-adversarial Wavelet Residual Network for Crevasse Detection Using Ground-penetrating Radar

DOI: 10.12000/JR25237 CSTR: 32380.14.JR25237
Funds:  The National Natural Science Foundation of China (41776204), The Fundamental Research Funds for the Central Universities (E2E41902X2, E3ET1901X2, E2ET1105X2)
More Information
  • Crevasse detection using Ground-Penetrating Radar (GPR) is crucial for glacier and climate studies and for ensuring safety in glacial regions. To address challenges including large texture variability in crevasses in polar environments, high false-alarm rates, limited real-time performance, and poor generalization, this study proposes a domain-adversarial learning–based automatic crevasse detection method that balances high accuracy and real-time efficiency. Using GPR data acquired from diverse regions and complex scenarios, an adversarial learning mechanism is established between a feature extractor and a domain discriminator, enabling the method to maintain discriminative feature extraction while effectively reducing interdomain distribution discrepancies. This leads to cross-domain feature alignment, enhancing robustness and generalization across heterogeneous data sources. In the feature extraction stage, a wavelet-residual-network-based crevasse feature extractor is designed. By introducing a learnable multiscale wavelet convolution module into the first layer of the residual network, the model adaptively extracts multiscale crevasse features from GPR data, significantly enhancing the separability between crevasse regions and continuous snow layers in the feature space. Experiments were conducted on two GPR datasets: the 2015 McMurdo Shear Zone dataset from Antarctica and a Greenland dataset from the Arctic region. The experimental results demonstrate that the proposed model achieves an average detection accuracy of 95.70%, an F1-score of 95.50%, and a false-alarm rate of 1.87%, with an average inference time of 5.26 ms per sample, thereby meeting the requirements for real-time crevasse warning during field GPR acquisition. Overall, the proposed method achieves a favorable balance among high accuracy, low false-alarm rate, and real-time performance across multiscene and cross-regional GPR data, demonstrating its suitability for safety assurance during Antarctic expeditions and for glacier crevasse detection in polar research.

     

  • loading
  • [1]
    COLGAN W, RAJARAM H, ABDALATI W, et al. Glacier crevasses: Observations, models, and mass balance implications[J]. Reviews of geophysics, 2016, 54(1): 119–161. doi: 10.1002/2015RG000504.
    [2]
    HERZFELD U C, TRANTOW T, LAWSON M, et al. Surface heights and crevasse morphologies of surging and fast-moving glaciers from ICESat-2 laser altimeter data - Application of the density-dimension algorithm (DDA-ice) and evaluation using airborne altimeter and Planet SkySat data[J]. Science of Remote Sensing, 2021, 3: 100013. doi: 10.1016/j.srs.2020.100013.
    [3]
    FUJITA K, THOMPSON L G, AGETA Y, et al. Thirty-year history of glacier melting in the Nepal Himalayas[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D3): D03109. doi: 10.1029/2005JD005894.
    [4]
    RASMUSSEN L A, CONWAY H, KRIMMEL R M, et al. Surface mass balance, thinning and iceberg production, Columbia Glacier, Alaska, 1948–2007[J]. Journal of Glaciology, 2011, 57(203): 431–440. doi: 10.3189/002214311796905532.
    [5]
    EDER K, REIDLER C, MAYER C, et al. Crevasse detection in Alpine areas using ground penetrating radar as a component for a mountain guide system[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37: 837–841.
    [6]
    周廷刚, 任贾文. 遥感原理与应用[M]. 2版. 北京: 科学出版社, 2022: 2–7.

    ZHOU Tinggang and REN Jiawen. Principles and Applications of Remote Sensing[M]. 2nd ed. Beijing: Science Press, 2022: 2–7.
    [7]
    THOMPSON S S, COOK S, KULESSA B, et al. Comparing satellite and helicopter-based methods for observing crevasses, application in East Antarctica[J]. Cold Regions Science and Technology, 2020, 178: 103128. doi: 10.1016/j.coldregions.2020.103128.
    [8]
    MARSH O J, PRICE D, COURVILLE Z R, et al. Crevasse and rift detection in Antarctica from TerraSAR-X satellite imagery[J]. Cold Regions Science and Technology, 2021, 187: 103284. doi: 10.1016/j.coldregions.2021.103284.
    [9]
    HUANG Ronggang, JIANG Liming, WANG Hansheng, et al. A bidirectional analysis method for extracting glacier crevasses from airborne LiDAR point clouds[J]. Remote Sensing, 2019, 11(20): 2373. doi: 10.3390/rs11202373.
    [10]
    BAURLEY N R, TOMSETT C, and HART J K. Assessing UAV-based laser scanning for monitoring glacial processes and interactions at high spatial and temporal resolutions[J]. Frontiers in Remote Sensing, 2022, 3: 1027065. doi: 10.3389/frsen.2022.1027065.
    [11]
    ZHAO Lin, ZHOU Hui, ZHU Xinge, et al. LIF-Seg: LiDAR and camera image fusion for 3D LiDAR semantic segmentation[J]. IEEE Transactions on Multimedia, 2024, 26: 1158–1168. doi: 10.1109/TMM.2023.3277281.
    [12]
    DELANEY A J, ARCONE S A, O’BANNON A, et al. Crevasse detection with GPR across the Ross Ice Shelf, Antarctica[C]. The Tenth International Conference on Grounds Penetrating Radar, 2004. GPR 2004, Delft, Netherlands, 2004: 777–780.
    [13]
    KOVACS A and ABELE G. Crevasse detection using an impulse radar system[J]. Antarctic Journal of the United States, 1974, 9(4): 177–178.
    [14]
    邢治瑞, 稂时楠, 赵博, 等. 极地冰雪探测冰雷达技术发展回顾与展望[J]. 极地研究, 2023, 35(4): 591–606. doi: 10.13679/j.jdyj.20220431.

    XING Zhirui, LANG Shinan, ZHAO Bo, et al. Review and prospect of ice radar technology for polar ice and snow detection[J]. Chinese Journal of Polar Research, 2023, 35(4): 591–606. doi: 10.13679/j.jdyj.20220431.
    [15]
    崔祥斌, 孙波, 田钢, 等. 冰雷达探测研究南极冰盖的进展与展望[J]. 地球科学进展, 2009, 24(4): 392–402. doi: 10.11867/j.issn.1001-8166.2009.04.0392.

    CUI Xiangbin, SUN Bo, TIAN Gang, et al. Progress and prospect of ice radar in investigating and researching antarctic ice sheet[J]. Advances in Earth Science, 2009, 24(4): 392–402. doi: 10.11867/j.issn.1001-8166.2009.04.0392.
    [16]
    TAURISANO A, TRONSTAD S, BRANDT O, et al. On the use of ground penetrating radar for detecting and reducing crevasse-hazard in Dronning Maud Land, Antarctica[J]. Cold Regions Science and Technology, 2006, 45(3): 166–177. doi: 10.1016/j.coldregions.2006.03.005.
    [17]
    WILLIAMS R M, RAY L E, LEVER J H, et al. Crevasse detection in ice sheets using ground penetrating radar and machine learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(12): 4836–4848. doi: 10.1109/JSTARS.2014.2332872.
    [18]
    WALKER B and RAY L. Multi-class crevasse detection using ground penetrating radar and feature-based machine learning[C]. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 3578–3581. doi: 10.1109/IGARSS.2019.8899148.
    [19]
    LIU Yan, FANG Chao, JI Xuanyuan, et al. Gabor filter banks used for crevasse detection with ground-penetrating radar data[C]. 18th International Conference on Ground Penetrating Radar, Golden, USA, 2020: 372–375. doi: 10.1190/gpr2020-097.1.
    [20]
    LIU Yan, LI Haoming, HUANG Mingzhe, et al. Ice crevasse detection with ground penetrating radar using faster R-CNN[C]. 2020 15th IEEE International Conference on Signal Processing (ICSP), Beijing, China, 2020: 596–599. doi: 10.1109/ICSP48669.2020.9321072.
    [21]
    WANG Min, CHEN Deyuan, ZHAO Bo, et al. Gabor-based U-Net crevasse detection with ground penetrating radar data[C]. 19th International Conference on Ground Penetrating Radar, Golden, USA, 2022: 102–106. doi: 10.1190/gpr2022-091.1.
    [22]
    CHEN Deyuan, WANG Min, WU Wei, et al. Siam-gabor-ResNet used for crevasse detection with ground-penetrating radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5105013. doi: 10.1109/TGRS.2025.3575735.
    [23]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    [24]
    武震, 张世强, 刘时银, 等. 祁连山老虎沟12号冰川冰内结构特征分析[J]. 地球科学进展, 2011, 26(6): 631–641. doi: 10.11867/j.issn.1001-8166.2011.06.0631.

    WU Zhen, ZHANG Shiqiang, LIU Shiyin, et al. Structural characteristics of the No.12 glacier in Laohugou valley, Qilian Mountain based on the ground penetrating radar combined with FDTD simulation[J]. Advances in Earth Science, 2011, 26(6): 631–641. doi: 10.11867/j.issn.1001-8166.2011.06.0631.
    [25]
    YU Suxi, HE Jingyuan, WANG Yi, et al. Texture classification network integrating adaptive wavelet transform[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2024, 22(5): 2450020. doi: 10.1142/S0219691324500206.
    [26]
    LEWALLE J and KELLER D S. Analysis of web defects by correlating 1-D Morlet and 2-D Mexican hat wavelet transforms[C]. SPIE 6001, Wavelet Applications in Industrial Processing III, Boston, USA, 2005: 63–74. doi: 10.1117/12.629908.
    [27]
    LONG Mingsheng, CAO Zhangjie, WANG Jianmin, et al. Conditional adversarial domain adaptation[C]. 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 1647–1657. doi: 10.5555/3326943.3327094.
    [28]
    SUN Yiran, JIN Feng, YANG Nan, et al. A low resource fault diagnosis model based on CDAN domain adaptation[C]. 2024 Global Reliability and Prognostics and Health Management Conference (PHM-Beijing), Beijing, China, 2024: 1–8. doi: 10.1109/PHM-Beijing63284.2024.10874628.
    [29]
    ARCONE S A, LEVER J H, RAY L E, et al. Ground-penetrating radar profiles of the McMurdo Shear Zone, Antarctica, acquired with an unmanned rover: Interpretation of crevasses, fractures, and folds within firn and marine ice[J]. Geophysics, 2016, 81(1): WA21–WA34. doi: 10.1190/geo2015-0132.1.
    [30]
    RAY L, JORDAN M, ARCONE S A, et al. Velocity field in the McMurdo shear zone from annual ground penetrating radar imaging and crevasse matching[J]. Cold Regions Science and Technology, 2020, 173: 103023. doi: 10.1016/j.coldregions.2020.103023.
    [31]
    LEVER J H, DELANEY A J, RAY L E, et al. Autonomous GPR surveys using the polar rover Yeti[J]. Journal of Field Robotics, 2013, 30(2): 194–215. doi: 10.1002/rob.21445.
    [32]
    WILLIAMS R M. Crevasse detection in ice sheets using ground penetrating radar and machine learning[D]. [Ph.D. dissertation], Dartmouth College, 2013.
    [33]
    KOH G, LEVER J H, ARCONE S A, et al. Autonomous FMCW radar survey of Antarctic shear zone[C]. The XIII Internarional Conference on Ground Penetrating Radar, Lecce, Italy, 2010: 1–5. doi: 10.1109/ICGPR.2010.5550174.
    [34]
    WALKER B. Multi-class crevasse detection using ground penetrating radar and feature-based machine learning[D]. [Ph.D. dissertation], Dartmouth College, 2019.
    [35]
    VAN DER MAATEN L and HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(86): 2579–2605.
    [36]
    JOCHER G. Ultralytics yolov5[EB/OL]. https://github.com/ultralytics/yolov5, 2020. doi: 10.5281/zenodo.3908559.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(84) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint