| Citation: | JI Dezheng, CHEN Deyuan, ZHAO Bo, et al. A domain-adversarial wavelet residual network for crevasse detection using ground-penetrating radar[J]. Journal of Radars, in press. doi: 10.12000/JR25237 |
| [1] |
COLGAN W, RAJARAM H, ABDALATI W, et al. Glacier crevasses: Observations, models, and mass balance implications[J]. Reviews of geophysics, 2016, 54(1): 119–161. doi: 10.1002/2015RG000504.
|
| [2] |
HERZFELD U C, TRANTOW T, LAWSON M, et al. Surface heights and crevasse morphologies of surging and fast-moving glaciers from ICESat-2 laser altimeter data - Application of the density-dimension algorithm (DDA-ice) and evaluation using airborne altimeter and Planet SkySat data[J]. Science of Remote Sensing, 2021, 3: 100013. doi: 10.1016/j.srs.2020.100013.
|
| [3] |
FUJITA K, THOMPSON L G, AGETA Y, et al. Thirty-year history of glacier melting in the Nepal Himalayas[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D3): D03109. doi: 10.1029/2005JD005894.
|
| [4] |
RASMUSSEN L A, CONWAY H, KRIMMEL R M, et al. Surface mass balance, thinning and iceberg production, Columbia Glacier, Alaska, 1948–2007[J]. Journal of Glaciology, 2011, 57(203): 431–440. doi: 10.3189/002214311796905532.
|
| [5] |
EDER K, REIDLER C, MAYER C, et al. Crevasse detection in Alpine areas using ground penetrating radar as a component for a mountain guide system[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37: 837–841.
|
| [6] |
周廷刚, 任贾文. 遥感原理与应用[M]. 2版. 北京: 科学出版社, 2022: 2–7.
ZHOU Tinggang and REN Jiawen. Principles and Applications of Remote Sensing[M]. 2nd ed. Beijing: Science Press, 2022: 2–7.
|
| [7] |
THOMPSON S S, COOK S, KULESSA B, et al. Comparing satellite and helicopter-based methods for observing crevasses, application in East Antarctica[J]. Cold Regions Science and Technology, 2020, 178: 103128. doi: 10.1016/j.coldregions.2020.103128.
|
| [8] |
MARSH O J, PRICE D, COURVILLE Z R, et al. Crevasse and rift detection in Antarctica from TerraSAR-X satellite imagery[J]. Cold Regions Science and Technology, 2021, 187: 103284. doi: 10.1016/j.coldregions.2021.103284.
|
| [9] |
HUANG Ronggang, JIANG Liming, WANG Hansheng, et al. A bidirectional analysis method for extracting glacier crevasses from airborne LiDAR point clouds[J]. Remote Sensing, 2019, 11(20): 2373. doi: 10.3390/rs11202373.
|
| [10] |
BAURLEY N R, TOMSETT C, and HART J K. Assessing UAV-based laser scanning for monitoring glacial processes and interactions at high spatial and temporal resolutions[J]. Frontiers in Remote Sensing, 2022, 3: 1027065. doi: 10.3389/frsen.2022.1027065.
|
| [11] |
ZHAO Lin, ZHOU Hui, ZHU Xinge, et al. LIF-Seg: LiDAR and camera image fusion for 3D LiDAR semantic segmentation[J]. IEEE Transactions on Multimedia, 2024, 26: 1158–1168. doi: 10.1109/TMM.2023.3277281.
|
| [12] |
DELANEY A J, ARCONE S A, O’BANNON A, et al. Crevasse detection with GPR across the Ross Ice Shelf, Antarctica[C]. The Tenth International Conference on Grounds Penetrating Radar, 2004. GPR 2004, Delft, Netherlands, 2004: 777–780.
|
| [13] |
KOVACS A and ABELE G. Crevasse detection using an impulse radar system[J]. Antarctic Journal of the United States, 1974, 9(4): 177–178.
|
| [14] |
邢治瑞, 稂时楠, 赵博, 等. 极地冰雪探测冰雷达技术发展回顾与展望[J]. 极地研究, 2023, 35(4): 591–606. doi: 10.13679/j.jdyj.20220431.
XING Zhirui, LANG Shinan, ZHAO Bo, et al. Review and prospect of ice radar technology for polar ice and snow detection[J]. Chinese Journal of Polar Research, 2023, 35(4): 591–606. doi: 10.13679/j.jdyj.20220431.
|
| [15] |
崔祥斌, 孙波, 田钢, 等. 冰雷达探测研究南极冰盖的进展与展望[J]. 地球科学进展, 2009, 24(4): 392–402. doi: 10.11867/j.issn.1001-8166.2009.04.0392.
CUI Xiangbin, SUN Bo, TIAN Gang, et al. Progress and prospect of ice radar in investigating and researching antarctic ice sheet[J]. Advances in Earth Science, 2009, 24(4): 392–402. doi: 10.11867/j.issn.1001-8166.2009.04.0392.
|
| [16] |
TAURISANO A, TRONSTAD S, BRANDT O, et al. On the use of ground penetrating radar for detecting and reducing crevasse-hazard in Dronning Maud Land, Antarctica[J]. Cold Regions Science and Technology, 2006, 45(3): 166–177. doi: 10.1016/j.coldregions.2006.03.005.
|
| [17] |
WILLIAMS R M, RAY L E, LEVER J H, et al. Crevasse detection in ice sheets using ground penetrating radar and machine learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(12): 4836–4848. doi: 10.1109/JSTARS.2014.2332872.
|
| [18] |
WALKER B and RAY L. Multi-class crevasse detection using ground penetrating radar and feature-based machine learning[C]. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 3578–3581. doi: 10.1109/IGARSS.2019.8899148.
|
| [19] |
LIU Yan, FANG Chao, JI Xuanyuan, et al. Gabor filter banks used for crevasse detection with ground-penetrating radar data[C]. 18th International Conference on Ground Penetrating Radar, Golden, USA, 2020: 372–375. doi: 10.1190/gpr2020-097.1.
|
| [20] |
LIU Yan, LI Haoming, HUANG Mingzhe, et al. Ice crevasse detection with ground penetrating radar using faster R-CNN[C]. 2020 15th IEEE International Conference on Signal Processing (ICSP), Beijing, China, 2020: 596–599. doi: 10.1109/ICSP48669.2020.9321072.
|
| [21] |
WANG Min, CHEN Deyuan, ZHAO Bo, et al. Gabor-based U-Net crevasse detection with ground penetrating radar data[C]. 19th International Conference on Ground Penetrating Radar, Golden, USA, 2022: 102–106. doi: 10.1190/gpr2022-091.1.
|
| [22] |
CHEN Deyuan, WANG Min, WU Wei, et al. Siam-gabor-ResNet used for crevasse detection with ground-penetrating radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5105013. doi: 10.1109/TGRS.2025.3575735.
|
| [23] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
| [24] |
武震, 张世强, 刘时银, 等. 祁连山老虎沟12号冰川冰内结构特征分析[J]. 地球科学进展, 2011, 26(6): 631–641. doi: 10.11867/j.issn.1001-8166.2011.06.0631.
WU Zhen, ZHANG Shiqiang, LIU Shiyin, et al. Structural characteristics of the No.12 glacier in Laohugou valley, Qilian Mountain based on the ground penetrating radar combined with FDTD simulation[J]. Advances in Earth Science, 2011, 26(6): 631–641. doi: 10.11867/j.issn.1001-8166.2011.06.0631.
|
| [25] |
YU Suxi, HE Jingyuan, WANG Yi, et al. Texture classification network integrating adaptive wavelet transform[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2024, 22(5): 2450020. doi: 10.1142/S0219691324500206.
|
| [26] |
LEWALLE J and KELLER D S. Analysis of web defects by correlating 1-D Morlet and 2-D Mexican hat wavelet transforms[C]. SPIE 6001, Wavelet Applications in Industrial Processing III, Boston, USA, 2005: 63–74. doi: 10.1117/12.629908.
|
| [27] |
LONG Mingsheng, CAO Zhangjie, WANG Jianmin, et al. Conditional adversarial domain adaptation[C]. 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 1647–1657. doi: 10.5555/3326943.3327094.
|
| [28] |
SUN Yiran, JIN Feng, YANG Nan, et al. A low resource fault diagnosis model based on CDAN domain adaptation[C]. 2024 Global Reliability and Prognostics and Health Management Conference (PHM-Beijing), Beijing, China, 2024: 1–8. doi: 10.1109/PHM-Beijing63284.2024.10874628.
|
| [29] |
ARCONE S A, LEVER J H, RAY L E, et al. Ground-penetrating radar profiles of the McMurdo Shear Zone, Antarctica, acquired with an unmanned rover: Interpretation of crevasses, fractures, and folds within firn and marine ice[J]. Geophysics, 2016, 81(1): WA21–WA34. doi: 10.1190/geo2015-0132.1.
|
| [30] |
RAY L, JORDAN M, ARCONE S A, et al. Velocity field in the McMurdo shear zone from annual ground penetrating radar imaging and crevasse matching[J]. Cold Regions Science and Technology, 2020, 173: 103023. doi: 10.1016/j.coldregions.2020.103023.
|
| [31] |
LEVER J H, DELANEY A J, RAY L E, et al. Autonomous GPR surveys using the polar rover Yeti[J]. Journal of Field Robotics, 2013, 30(2): 194–215. doi: 10.1002/rob.21445.
|
| [32] |
WILLIAMS R M. Crevasse detection in ice sheets using ground penetrating radar and machine learning[D]. [Ph.D. dissertation], Dartmouth College, 2013.
|
| [33] |
KOH G, LEVER J H, ARCONE S A, et al. Autonomous FMCW radar survey of Antarctic shear zone[C]. The XIII Internarional Conference on Ground Penetrating Radar, Lecce, Italy, 2010: 1–5. doi: 10.1109/ICGPR.2010.5550174.
|
| [34] |
WALKER B. Multi-class crevasse detection using ground penetrating radar and feature-based machine learning[D]. [Ph.D. dissertation], Dartmouth College, 2019.
|
| [35] |
VAN DER MAATEN L and HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(86): 2579–2605.
|
| [36] |
JOCHER G. Ultralytics yolov5[EB/OL]. https://github.com/ultralytics/yolov5, 2020. doi: 10.5281/zenodo.3908559.
|