| Citation: | ZHOU Zheng, ZHAO Lingjun, HE Qishan, et al. Research progress and prospects of SAR image target detection based on multi-source information cross-domain learning[J]. Journal of Radars, in press. doi: 10.12000/JR25205 |
| [1] |
MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301.
|
| [2] |
徐丰, 金亚秋. 从物理智能到微波视觉[J]. 科技导报, 2018, 36(10): 30–44. doi: 10.3981/j.issn.1000-7857.2018.10.004.
XU Feng and JIN Yaqiu. From the emergence of intelligent science to the research of microwave vision[J]. Science & Technology Review, 2018, 36(10): 30–44. doi: 10.3981/j.issn.1000-7857.2018.10.004.
|
| [3] |
江碧涛. 我国空间对地观测技术的发展与展望[J]. 测绘学报, 2022, 51(7): 1153–1159. doi: 10.11947/j.AGCS.2022.20220199.
JIANG Bitao. The development and prospect of China's space earth observation technology[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1153–1159. doi: 10.11947/j.AGCS.2022.20220199.
|
| [4] |
关键. 雷达海上目标特性综述[J]. 雷达学报, 2020, 9(4): 674–683. doi: 10.12000/JR20114.
GUAN Jian. Summary of marine radar target characteristics[J]. Journal of Radars, 2020, 9(4): 674–683. doi: 10.12000/JR20114.
|
| [5] |
TANG Gang, ZHUGE Yichao, CLARAMUNT C, et al. N-YOLO: A SAR ship detection using noise-classifying and complete-target extraction[J]. Remote Sensing, 2021, 13(5): 871. doi: 10.3390/rs13050871.
|
| [6] |
PELICH R, CHINI M, HOSTACHE R, et al. Large-scale automatic vessel monitoring based on dual-polarization Sentinel-1 and AIS data[J]. Remote Sensing, 2019, 11(9): 1078. doi: 10.3390/rs11091078.
|
| [7] |
赵琰, 赵凌君, 匡纲要. 基于注意力机制特征融合网络的SAR图像飞机目标快速检测[J]. 电子学报, 2021, 49(9): 1665–1674. doi: 10.12263/DZXB.20200486.
ZHAO Yan, ZHAO Lingjun, and KUANG Gangyao. Attention feature fusion network for rapid aircraft detection in SAR images[J]. Acta Electronica Sinica, 2021, 49(9): 1665–1674. doi: 10.12263/DZXB.20200486.
|
| [8] |
LI Weijie, YANG Wei, HOU Yuenan, et al. SARATR-X: Toward building a foundation model for SAR target recognition[J]. IEEE Transactions on Image Processing, 2025, 34: 869–884. doi: 10.1109/TIP.2025.3531988.
|
| [9] |
ZHOU Jie, LIU Yongxiang, PENG Bowen, et al. MaDiNet: Mamba diffusion network for SAR target detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2025, 35(11): 10787–10800. doi: 10.1109/TCSVT.2025.3574657.
|
| [10] |
FRANCESCHETTI G, IODICE A, RICCIO D, et al. SAR raw signal simulation for urban structures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9): 1986–1995. doi: 10.1109/TGRS.2003.814626.
|
| [11] |
FORNARO G. Trajectory deviations in airborne SAR: Analysis and compensation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 997–1009. doi: 10.1109/7.784069.
|
| [12] |
SHI Yu, LI Yi, DU Lan, et al. Unsupervised domain adaptative SAR target detection based on feature decomposition and uncertainty-guided self-training[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 20265–20283. doi: 10.1109/JSTARS.2024.3486922.
|
| [13] |
ZHOU Zheng, ZHAO Lingjun, JI Kefeng, et al. A domain-adaptive few-shot SAR ship detection algorithm driven by the latent similarity between optical and SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5216318. doi: 10.1109/TGRS.2024.3421512.
|
| [14] |
HUANG Hailiang, GUO Jingchao, LIN Huangxing, et al. Domain adaptive oriented object detection from optical to SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5200314. doi: 10.1109/TGRS.2024.3515161.
|
| [15] |
YUAN Yuxuan, TANG Luyao, XU Ying, et al. Filling and disentanglement: Toward low- and high-order parallel single-domain generalization for SAR ship detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(2): 3668–3682. doi: 10.1109/TAES.2024.3489572.
|
| [16] |
ZHANG Xianghui, ZHANG Siqian, SUN Zhongzhen, et al. Cross-sensor SAR image target detection based on dynamic feature discrimination and center-aware calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5209417. doi: 10.1109/TGRS.2025.3559618.
|
| [17] |
ZHAO Siyuan, KANG Yong, YUAN Hang, et al. FsDAOD: Few-shot domain adaptation object detection for heterogeneous SAR image[J]. Science of Remote Sensing, 2025, 11: 100202. doi: 10.1016/j.srs.2025.100202.
|
| [18] |
PATEL V M, GOPALAN R, LI Ruonan, et al. Visual domain adaptation: A survey of recent advances[J]. IEEE Signal Processing Magazine, 2015, 32(3): 53–69. doi: 10.1109/MSP.2014.2347059.
|
| [19] |
WANG Mei and DENG Weihong. Deep visual domain adaptation: A survey[J]. Neurocomputing, 2018, 312: 135–153. doi: 10.1016/j.neucom.2018.05.083.
|
| [20] |
ZHUANG Fuzhen, QI Zhiyuan, DUAN Keyu, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109(1): 43–76. doi: 10.1109/JPROC.2020.3004555.
|
| [21] |
TOLDO M, MARACANI A, MICHIELI U, et al. Unsupervised domain adaptation in semantic segmentation: A review[J]. Technologies, 2020, 8(2): 35. doi: 10.3390/technologies8020035.
|
| [22] |
ZHAO Sicheng, YUE Xiangyu, ZHANG Shanghang, et al. A review of single-source deep unsupervised visual domain adaptation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 473–493. doi: 10.1109/TNNLS.2020.3028503.
|
| [23] |
OZA P, SINDAGI V A, VS V, et al. Unsupervised domain adaptation of object detectors: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(6): 4018–4040. doi: 10.1109/TPAMI.2022.3217046.
|
| [24] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
|
| [25] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. The 14th European Conference on Computer Vision–ECCV 2016, Amsterdam, The Netherlands, 2016: 21–37. doi: 10.1007/978-3-319-46448-0_2.
|
| [26] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318–327. doi: 10.1109/TPAMI.2018.2858826.
|
| [27] |
SUN Zhongzhen, LENG Xiangguang, LEI Yu, et al. BiFA-YOLO: A novel YOLO-based method for arbitrary-oriented ship detection in high-resolution SAR images[J]. Remote Sensing, 2021, 13(21): 4209. doi: 10.3390/rs13214209.
|
| [28] |
ZHOU Zheng, CHEN Jie, HUANG Zhixiang, et al. HRLE-SARDet: A lightweight SAR target detection algorithm based on hybrid representation learning enhancement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5203922. doi: 10.1109/TGRS.2023.3251694.
|
| [29] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. The 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587. doi: 10.1109/CVPR.2014.81.
|
| [30] |
GIRSHICK R. Fast R-CNN[C]. The 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448. doi: 10.1109/ICCV.2015.169.
|
| [31] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
|
| [32] |
LI Jianwei, QU Changwen, and SHAO Jiaqi. Ship detection in SAR images based on an improved faster R-CNN[C]. The 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 2017: 1–6. doi: 10.1109/BIGSARDATA.2017.8124934.
|
| [33] |
LIN Zhao, JI Kefeng, LENG Xiangguang, et al. Squeeze and excitation rank faster R-CNN for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(5): 751–755. doi: 10.1109/LGRS.2018.2882551.
|
| [34] |
JIAO Jiao, ZHANG Yue, SUN Hao, et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection[J]. IEEE Access, 2018, 6: 20881–20892. doi: 10.1109/ACCESS.2018.2825376.
|
| [35] |
CHEN Shiqi, ZHAN Ronghui, and ZHANG Jun. Robust single stage detector based on two-stage regression for SAR ship detection[C]. The 2nd International Conference on Innovation in Artificial Intelligence, Shanghai, China, 2018: 169–174. doi: 10.1145/3194206.3194223.
|
| [36] |
WEI Shunjun, SU Hao, MING Jing, et al. Precise and robust ship detection for high-resolution SAR imagery based on HR-SDNet[J]. Remote Sensing, 2020, 12(1): 167. doi: 10.3390/rs12010167.
|
| [37] |
CUI Zongyong, LI Qi, CAO Zongjie, et al. Dense attention pyramid networks for multi-scale ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8983–8997. doi: 10.1109/TGRS.2019.2923988.
|
| [38] |
ZHAO Yan, ZHAO Lingjun, XIONG Boli, et al. Attention receptive pyramid network for ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2738–2756. doi: 10.1109/JSTARS.2020.2997081.
|
| [39] |
WANG Shiyu, CAI Zhanchuan, and YUAN Jieyu. Automatic SAR ship detection based on multifeature fusion network in spatial and frequency domains[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4102111. doi: 10.1109/TGRS.2023.3267495.
|
| [40] |
PAN Dece, GAO Xin, DAI Wei, et al. SRT-Net: Scattering region topology network for oriented ship detection in large-scale SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5202318. doi: 10.1109/TGRS.2024.3351366.
|
| [41] |
ZHANG Chongqi, DENG Yao, CHONG Mingzhe, et al. Entropy-based re-sampling method on SAR class imbalance target detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 209: 432–447. doi: 10.1016/j.isprsjprs.2024.02.019.
|
| [42] |
SHI Yu, DU Lan, GUO Yuchen, et al. Unsupervised domain adaptation based on progressive transfer for ship detection: From optical to SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5230317. doi: 10.1109/TGRS.2022.3185298.
|
| [43] |
ZHAO Siyuan, LUO Ying, ZHANG Tao, et al. A feature decomposition-based method for automatic ship detection crossing different satellite SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5234015. doi: 10.1109/TGRS.2022.3201628.
|
| [44] |
XU Chujie, ZHENG Xiangtao, and LU Xiaoqiang. Multi-level alignment network for cross-domain ship detection[J]. Remote Sensing, 2022, 14(10): 2389. doi: 10.3390/rs14102389.
|
| [45] |
ZHAO Siyuan, LUO Ying, ZHANG Tao, et al. A domain specific knowledge extraction transformer method for multisource satellite-borne SAR images ship detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 198: 16–29. doi: 10.1016/j.isprsjprs.2023.02.011.
|
| [46] |
YUAN Yuxuan, RAO Zhijie, LIN Chuyang, et al. Adaptive ship detection from optical to SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 3508205. doi: 10.1109/LGRS.2023.3317321.
|
| [47] |
HE Jiayue, SU Nan, XU Congan, et al. A cross-modality feature transfer method for target detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5213615. doi: 10.1109/TGRS.2023.3300536.
|
| [48] |
SHI Yu, DU Lan, GUO Yuchen, et al. Optical knowledge assisted unsupervised cross-domain SAR target detection[J]. IET Conference Proceedings, 2024, 2023(47): 1474–1480. doi: 10.1049/icp.2024.1303.
|
| [49] |
ZHANG Ruixiang, WANG Yuxuan, LI Haoyuan, et al. Decoupled multi-teacher: Cross-modal learning enhanced object detection in SAR imagery[C]. IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024: 7858–7862. doi: 10.1109/IGARSS53475.2024.10641529.
|
| [50] |
何佳月, 宿南, 徐从安, 等. 从光学到SAR: 基于多级跨模态对齐的SAR图像舰船检测算法[J]. 遥感学报, 2024, 28(7): 1789–1801. doi: 10.11834/jrs.20243249.
HE Jiayue, SU Nan, XU Congan, et al. From optical to SAR: A SAR ship detection algorithm based on multi-level cross-modality alignment[J]. National Remote Sensing Bulletin, 2024, 28(7): 1789–1801. doi: 10.11834/jrs.20243249.
|
| [51] |
ZHAO Xiaolin, ZHAO Siyuan, LUO Ying, et al. Generalizing SAR object detection: A unified framework for cross-source scenarios[J]. IEEE Geoscience and Remote Sensing Letters, 2025, 22: 4009105. doi: 10.1109/LGRS.2025.3575173.
|
| [52] |
SHI Yu, DU Lan, and GUO Yuchen. Unsupervised domain adaptation for SAR target detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6372–6385. doi: 10.1109/JSTARS.2021.3089238.
|
| [53] |
SHI Yu, DU Lan, GUO Yuchen, et al. Cross sensor transfer learning for unsupervised SAR target detection[C]. 2021 CIE International Conference on Radar (Radar), Haikou, China, 2021: 2082–2086. doi: 10.1109/Radar53847.2021.10028188.
|
| [54] |
CHEN Shiqi, ZHAN Ronghui, WANG Wei, et al. Domain adaptation for semi-supervised ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4507405. doi: 10.1109/LGRS.2022.3171789.
|
| [55] |
ZHANG Tingting, LOU Xin, WANG Han, et al. Context-preserving region-based contrastive learning framework for ship detection in SAR[J]. Journal of Signal Processing Systems, 2023, 95(1): 3–12. doi: 10.1007/s11265-022-01799-8.
|
| [56] |
ZOU Bin, QIN Jiang, and ZHANG Lamei. Cross-scene target detection based on feature adaptation and uncertainty-aware pseudo-label learning for high resolution SAR images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 200: 173–190. doi: 10.1016/j.isprsjprs.2023.05.009.
|
| [57] |
ZHENG Xiangtao, CUI Haowen, XU Chujie, et al. Dual teacher: A semisupervised cotraining framework for cross-domain ship detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5613312. doi: 10.1109/TGRS.2023.3287863.
|
| [58] |
ZHANG Xin and ZHAO Siyuan. A domain adaptation detector for heterogenous SAR image object detection[J]. IET Conference Proceedings, 2024, 2023(47): 3215–3218. doi: 10.1049/icp.2024.1613.
|
| [59] |
CHEN Xi, WANG Zhirui, WANG Wenhao, et al. CroMoDa: Unsupervised oriented SAR ship detection via cross-modality distribution alignment[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 11899–11914. doi: 10.1109/JSTARS.2024.3420901.
|
| [60] |
LOU Xin and WANG Han. Object detection in SAR via generative knowledge transfer[C]. 2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP), Gold Coast, Australia, 2021: 1–6. doi: 10.1109/MLSP52302.2021.9596254.
|
| [61] |
PU Xinyang, JIA Hecheng, XIN Yu, et al. Ship detection in low-quality SAR images via an unsupervised domain adaption method[J]. Remote Sensing, 2023, 15(13): 3326. doi: 10.3390/rs15133326.
|
| [62] |
PU Xinyang, JIA Hecheng, and XU Feng. Cross-domain SAR ship detection in strong interference environment based on image-to-image translation[C]. IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 1798–1801. doi: 10.1109/IGARSS52108.2023.10282746.
|
| [63] |
YU Wenbo, WANG Zijian, LI Jiamu, et al. Unsupervised aircraft detection in SAR images with image-level domain adaption from optical images[C]. The 3rd International Conference on Computer Vision and Pattern Analysis (ICCPA 2023), Hangzhou, China, 2023. doi: 10.1117/12.2684516.
|
| [64] |
YU Wenbo, LI Jiamu, WANG Zijian, et al. Boosting SAR aircraft detection performance with multi-stage domain adaptation training[J]. Remote Sensing, 2023, 15(18): 4614. doi: 10.3390/rs15184614.
|
| [65] |
YANG Yanrui, CHEN Jie, SUN Long, et al. Unsupervised domain-adaptive SAR ship detection based on cross-domain feature interaction and data contribution balance[J]. Remote Sensing, 2024, 16(2): 420. doi: 10.3390/rs16020420.
|
| [66] |
娄欣, 王晗, 卢昊, 等. 生成式知识迁移的SAR舰船检测[J]. 遥感学报, 2024, 28(2): 470–480. doi: 10.11834/jrs.20211354.
LOU Xin, WANG Han, LU Hao, et al. SAR ship detection through generative knowledge transfer[J]. National Remote Sensing Bulletin, 2024, 28(2): 470–480. doi: 10.11834/jrs.20211354.
|
| [67] |
WU Baolong, WANG Haonan, ZHANG Cunle, et al. Optical-to-SAR translation based on CDA-GAN for high-quality training sample generation for ship detection in SAR amplitude images[J]. Remote Sensing, 2024, 16(16): 3001. doi: 10.3390/rs16163001.
|
| [68] |
陈亮, 李健昊, 何成, 等. 多域特征引导的无监督SAR图像舰船检测方法[J]. 上海航天(中英文), 2024, 41(3): 121–129. doi: 10.19328/j.cnki.2096-8655.2024.03.013.
CHEN Liang, LI Jianhao, HE Cheng, et al. A multi-domain feature-guided method for unsupervised ship detection in SAR images[J]. Aerospace Shanghai (Chinese & English), 2024, 41(3): 121–129. doi: 10.19328/j.cnki.2096-8655.2024.03.013.
|
| [69] |
LUO Cheng, ZHANG Yueting, GUO Jiayi, et al. SAR-CDSS: A semi-supervised cross-domain object detection from optical to SAR domain[J]. Remote Sensing, 2024, 16(6): 940. doi: 10.3390/rs16060940.
|
| [70] |
ZHU Ya’nan, AI Jiaqiu, XUE Weibao, et al. Cross-modal ship detection from optical to SAR images based on pixel- and feature-level progressive transfer[J]. IEEE Sensors Journal, 2025, 25(8): 13344–13356. doi: 10.1109/JSEN.2025.3543520.
|
| [71] |
ZHAO Siyuan, ZHANG Zenghui, GUO Weiwei, et al. An automatic ship detection method adapting to different satellites SAR images with feature alignment and compensation loss[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5225217. doi: 10.1109/TGRS.2022.3160727.
|
| [72] |
ZHANG Jun, LI Simin, DONG Yongfeng, et al. Hierarchical similarity alignment for domain adaptive ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5240611. doi: 10.1109/TGRS.2022.3227626.
|
| [73] |
宋玉成, 李景润, 田甜, 等. 跨模态域自适应SAR图像舰船检测与识别[J]. 华中科技大学学报: 自然科学版, 2022, 50(11): 107–113. doi: 10.13245/j.hust.221113.
SONG Yucheng, LI Jingrun, TIAN Tian, et al. Ship detection and recognition in SAR images with cross-modality domain adaption[J]. Journal of Huazhong University of Science & Technology: Natural Science Edition, 2022, 50(11): 107–113. doi: 10.13245/j.hust.221113.
|
| [74] |
JEONG S, KIM Y, KIM S, et al. Enriching SAR ship detection via multistage domain alignment[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4018905. doi: 10.1109/LGRS.2021.3115498.
|
| [75] |
PAN Bin, XU Zhehao, SHI Tianyang, et al. An imbalanced discriminant alignment approach for domain adaptive SAR ship detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5108111. doi: 10.1109/TGRS.2023.3303507.
|
| [76] |
LIU Shuang, LI Dong, WAN Jun, et al. Source-assisted hierarchical semantic calibration method for ship detection across different satellite SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5215221. doi: 10.1109/TGRS.2024.3419025.
|
| [77] |
HU Kaiou, WAN Hongjie, and MA Fei. Cross-domain SAR detection method based on salient object alignment[J]. IET Conference Proceedings, 2024, 2023(47): 3347–3351. doi: 10.1049/icp.2024.1638.
|
| [78] |
LIAO Leiyao, DU Lan, and GUO Yuchen. Semi-supervised SAR target detection based on an improved faster R-CNN[J]. Remote Sensing, 2021, 14(1): 143. doi: 10.3390/rs14010143.
|
| [79] |
GUO Yuchen, DU Lan, and LYU Guoxin. SAR target detection based on domain adaptive faster R-CNN with small training data size[J]. Remote Sensing, 2021, 13(21): 4202. doi: 10.3390/rs13214202.
|
| [80] |
WANG Xu, ZHOU Huaji, CHEN Zheng, et al. Few-shot SAR ship image detection using two-stage cross-domain transfer learning[C]. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 2195–2198. doi: 10.1109/IGARSS46834.2022.9883172.
|
| [81] |
QIN Jiang, ZOU Bin, ZHANG Lamei, et al. Domain adaptive target detection with optimal transportation for different satellite SAR images[C]. EUSAR 2024; 15th European Conference on Synthetic Aperture Radar, Munich, Germany, 2024: 498–502. (查阅网上资料,未找到DOI信息,请确认).
|
| [82] |
CHAN Haopeng, QIU Xiaolan, GAO Xin, et al. A complex background SAR ship target detection method based on fusion tensor and cross-domain adversarial learning[J]. Remote Sensing, 2024, 16(18): 3492. doi: 10.3390/rs16183492.
|
| [83] |
LIAO Leiyao. Semi-supervised SAR target detection with cross-domain transfer learning based on YOLOv5[C]. IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024: 7401–7404. doi: 10.1109/IGARSS53475.2024.10641642.
|
| [84] |
DONG Jun, FENG Jiewen, and TANG Xiaoyu. OptiSAR-Net: A cross-domain ship detection method for multisource remote sensing data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4709311. doi: 10.1109/TGRS.2024.3502447.
|
| [85] |
HU Kaiou, WAN Hongjie, MA Fei, et al. Cross-domain SAR object detection by efficiently fine-tuning SAM[C]. 2024 Photonics & Electromagnetics Research Symposium (PIERS), Chengdu, China, 2024: 1–7. doi: 10.1109/PIERS62282.2024.10618373.
|
| [86] |
ZHANG Chaochen, CHEN Jie, HUANG Zhongling, et al. SAR image target segmentation guided by the scattering mechanism-based visual foundation model[J]. Remote Sensing, 2025, 17(7): 1209. doi: 10.3390/rs17071209.
|
| [87] |
ZOU Zhengxia and SHI Zhenwei. Random access memories: A new paradigm for target detection in high resolution aerial remote sensing images[J]. IEEE Transactions on Image Processing, 2018, 27(3): 1100–1111. doi: 10.1109/TIP.2017.2773199.
|
| [88] |
ZHANG Yuanlin, YUAN Yuan, FENG Yachuang, et al. Hierarchical and robust convolutional neural network for very high-resolution remote sensing object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5535–5548. doi: 10.1109/TGRS.2019.2900302.
|
| [89] |
CHEN Ziyi, WANG Cheng, LUO Huan, et al. Vehicle detection in high-resolution aerial images based on fast sparse representation classification and multiorder feature[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(8): 2296–2309. doi: 10.1109/TITS.2016.2517826.
|
| [90] |
LI Ke, WAN Gang, CHENG Gong, et al. Object detection in optical remote sensing images: A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296–307. doi: 10.1016/j.isprsjprs.2019.11.023.
|
| [91] |
LIU Zikun, YUAN Liu, WENG Lubin, et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C]. The 6th International Conference on Pattern Recognition Applications and Methods, Porto, Portugal, 2017: 324–331. doi: 10.5220/0006120603240331.
|
| [92] |
XIA Guisong, BAI Xiang, DING Jian, et al. DOTA: A large-scale dataset for object detection in aerial images[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3974–3983. doi: 10.1109/CVPR.2018.00418.
|
| [93] |
ZHANG Zhengning, ZHANG Lin, WANG Yue, et al. ShipRSImageNet: A large-scale fine-grained dataset for ship detection in high-resolution optical remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 8458–8472. doi: 10.1109/JSTARS.2021.3104230.
|
| [94] |
SHERMEYER J, HOGAN D, BROWN J, et al. SpaceNet 6: Multi-sensor all weather mapping dataset[C]. The 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, USA, 2020: 768–777. doi: 10.1109/CVPRW50498.2020.00106.
|
| [95] |
SHIN C, KIM S, and KIM Y. From planetscope to worldview: Micro-satellite image super-resolution with optimal transport distance[C]. The 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 2020: 898–902. doi: 10.1109/ICIP40778.2020.9190810.
|
| [96] |
INVERSION, FAUDI J, and MARTIN. Airbus ship detection challenge[EB/OL]. https://www.kaggle.com/c/airbus-ship-detection, 2018.(查阅网上资料,不确定标黄作者是否正确,请确认).
|
| [97] |
ZHANG Tianwen, ZHANG Xiaoling, LI Jianwei, et al. SAR Ship Detection Dataset (SSDD): Official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13(18): 3690. doi: 10.3390/rs13183690.
|
| [98] |
WEI Shunjun, ZENG Xiangfeng, QU Qizhe, et al. HRSID: A high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8: 120234–120254. doi: 10.1109/ACCESS.2020.3005861.
|
| [99] |
SANDIA mini SAR complex imagery[EB/OL]. http://www.sandia.gov/radar/complex-data/index.Html, 2005. Accessed: Apr. 15, 2021. (查阅网上资料,未找到本条文献信息,请确认).
|
| [100] |
FARADSAR public release data[EB/OL]. 2015. https://www.sandia.gov/radar/complex_data/FARAD_KA_BAND.zip. (查阅网上资料,未找到本条文献信息,请确认).
|
| [101] |
LEI Songlin, LU Dongdong, QIU Xiaolan, et al. SRSDD-v1.0: A high-resolution SAR rotation ship detection dataset[J]. Remote Sensing, 2021, 13(24): 5104. doi: 10.3390/rs13245104.
|
| [102] |
孙显, 王智睿, 孙元睿, 等. AIR-SARShip-1.0: 高分辨率SAR舰船检测数据集[J]. 雷达学报, 2019, 8(6): 852–862. doi: 10.12000/JR19097.
SUN Xian, WANG Zhirui, SUN Yuanrui, et al. AIR-SARShip-1.0: High-resolution SAR ship detection dataset[J]. Journal of Radars, 2019, 8(6): 852–862. doi: 10.12000/JR19097.
|
| [103] |
WANG Yuanyuan, WANG Chao, ZHANG Hong, et al. A SAR dataset of ship detection for deep learning under complex backgrounds[J]. Remote Sensing, 2019, 11(7): 765. doi: 10.3390/rs11070765.
|
| [104] |
陈杰, 黄志祥, 夏润繁, 等. 大规模多类SAR目标检测数据集-1.0[J/OL]. 雷达学报, https://radars.ac.cn/web/data/getData?dataType=MSAR, 2022.
CHEN Jie, HUANG Zhixiang, XIA Runfan, et al. Large-scale multi-class SAR image target detection dataset-1.0[J/OL]. Journal of Radars, https://radars.ac.cn/web/data/getData?dataType=MSAR, 2022.
|
| [105] |
徐从安, 苏航, 李健伟, 等. RSDD-SAR: SAR舰船斜框检测数据集[J]. 雷达学报, 2022, 11(4): 581–599. doi: 10.12000/JR22007.
XU Congan, SU Hang, LI Jianwei, et al. RSDD-SAR: Rotated ship detection dataset in SAR images[J]. Journal of Radars, 2022, 11(4): 581–599. doi: 10.12000/JR22007.
|