| Citation: | WANG Chongsong, PU Wei, GAO Jie, et al. Lightweight discrimination network for non-spoofing active jamming in SAR under low JSR[J]. Journal of Radars, in press. doi: 10.12000/JR25195 |
| [1] |
SADIQ R, QURESHI M B, and KHAN M M. De-convolution and De-noising of SAR based GPS images using hybrid particle swarm optimization[J]. Chinese Journal of Electronics, 2023, 32(1): 166–176. doi: 10.23919/cje.2021.00.138.
|
| [2] |
ZHOU Lifan, ZHOU Xuanyu, FENG Huanghao, et al. Transformer-based semantic segmentation for flood region recognition in SAR images[J]. IEEE Journal on Miniaturization for Air and Space Systems, 2025, 6(3): 222–229. doi: 10.1109/JMASS.2025.3542124.
|
| [3] |
LIU Niantang, ZHAO Qunshan, WILLIAMS R, et al. Enhanced crop mapping using polarimetric SAR features and time series deep learning: A case study in Bei’an, China[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5002917. doi: 10.1109/TGRS.2025.3544339.
|
| [4] |
PEREIRA-PIRES J, GUERRA-HERNÁNDEZ J, SILVA J M N, et al. Forest height mapping with multifrequency SAR in mediterranean forests[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 4403415. doi: 10.1109/TGRS.2025.3538216.
|
| [5] |
武俊杰, 杨建宇, 李中余, 等. 双基地SAR成像处理方法综述[J]. 雷达学报(中英文), 2025, 14(5): 1115–1141. doi: 10.12000/JR25067.
WU Junjie, YANG Jianyu, LI Zhongyu, et al. Review of bistatic synthetic aperture radar imaging methods[J]. Journal of Radars, 2025, 14(5): 1115–1141. doi: 10.12000/JR25067.
|
| [6] |
CAO Rui, WANG Yong, GIUSTI E, et al. 3-D reconstruction of ship target based on SAR images sequence and scatterer tracking technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5200415. doi: 10.1109/TGRS.2024.3514699.
|
| [7] |
WU Wanmin, PU Wei, HAI Yu, et al. A deep learning-based SAR imaging framework for ship targets with sample-wise variant motion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5214116. doi: 10.1109/TGRS.2025.3575325.
|
| [8] |
DOMÍNGUEZ E M, BROTZER P, CASALINI E, et al. Mapping urban areas and infrastructure through fusion of airborne SAR 3-D images: A comparative study with ALS sensors[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 6164–6181. doi: 10.1109/JSTARS.2025.3541425.
|
| [9] |
WANG Chongsong, LI Yuzhao, SHANG Yuanzhe, et al. An anchor-free method for aircraft detection in SAR images based on density map[C]. 2024 IEEE International Conference on Signal, Information and Data Processing, Zhuhai, China, 2024: 1–6. doi: 10.1109/ICSIDP62679.2024.10868269.
|
| [10] |
黄岩, 赵博, 陶明亮, 等. 合成孔径雷达抗干扰技术综述[J]. 雷达学报, 2020, 9(1): 86–106. doi: 10.12000/JR19113.
HUANG Yan, ZHAO Bo, TAO Mingliang, et al. Review of synthetic aperture radar interference suppression[J]. Journal of Radars, 2020, 9(1): 86–106. doi: 10.12000/JR19113.
|
| [11] |
李本朋. 国外机载箔条干扰技术的发展[J]. 机械管理开发, 2018, 33(2): 56–58. doi: 10.16525/j.cnki.cn14-1134/th.2018.02.23.
LI Benpeng. Development of foreign airborne chaff jamming technology[J]. Mechanical Management and Development, 2018, 33(2): 56–58. doi: 10.16525/j.cnki.cn14-1134/th.2018.02.23.
|
| [12] |
李超, 李芳. 基于人工电磁材料的新型电磁隐身机制——电磁隐身斗篷[J]. 北京石油化工学院学报, 2009, 17(1): 48–52. doi: 10.3969/j.issn.1008-2565.2009.01.011.
LI Chao and LI Fang. A novel electromagnetic stealth method-electromagnetic invisible cloaks[J]. Journal of Beijing Institute of Petrochemical Technology, 2009, 17(1): 48–52. doi: 10.3969/j.issn.1008-2565.2009.01.011.
|
| [13] |
LIN Hao, XING Mengdao, LOU Yishan, et al. Research on anti-deception forwarding interference of squint azimuth multichannel SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5203912. doi: 10.1109/TGRS.2023.3334022.
|
| [14] |
WANG Zan, GUO Zhengwei, SHU Gaofeng, et al. Radar jamming recognition: Models, methods, and prospects[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 3315–3343. doi: 10.1109/JSTARS.2024.3522951.
|
| [15] |
朱吉利, 范振军. 一种基于集成学习的干扰频点检测方法[J]. 图像与信号处理, 2025, 14(1): 100–107. doi: 10.12677/jisp.2025.141010.
ZHU Jili and FAN Zhenjun. A detection method of jamming frequency based on ensemble learning[J]. Journal of Image and Signal Processing, 2025, 14(1): 100–107. doi: 10.12677/jisp.2025.141010.
|
| [16] |
LV Qinzhe, QUAN Yinghui, FENG Wei, et al. Radar deception jamming recognition based on weighted ensemble CNN with transfer learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5107511. doi: 10.1109/TGRS.2021.3129645.
|
| [17] |
QU Qizhe, WEI Shujun, LIU Shan, et al. JRNet: Jamming recognition networks for radar compound suppression jamming signals[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15035–15045. doi: 10.1109/TVT.2020.3032197.
|
| [18] |
LUO Zhenyu, CAO Yunhe, YEO T S, et al. Few-shot radar jamming recognition network via time-frequency self-attention and global knowledge distillation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5105612. doi: 10.1109/TGRS.2023.3280322.
|
| [19] |
邢世其, 纪朋徽, 代大海, 等. 方位向调制干扰对高分宽幅多通道SAR的影响[J]. 系统工程与电子技术, 2024, 46(6): 1946–1956. doi: 10.12305/j.issn.1001-506X.2024.06.12.
XING Shiqi, JI Penghui, DAI Dahai, et al. Influence of azimuth-modulation jamming on high-resolution wide-swath multi-channel SAR[J]. Systems Engineering and Electronics, 2024, 46(6): 1946–1956. doi: 10.12305/j.issn.1001-506X.2024.06.12.
|
| [20] |
康晓磊. 面向目标识别的SAR成像干扰类型判别与分级方法研究[D]. [硕士论文], 华中科技大学, 2018. doi: 10.7666/d.D01544285.
KANG Xiaolei. Research on discrimination and classification methods of SAR jamming types for target recognition[D]. [Master dissertation], Huazhong University of Science and Technology, 2018. doi: 10.7666/d.D01544285.
|
| [21] |
陈思伟, 崔兴超, 李铭典, 等. 基于深度CNN模型的SAR图像有源干扰类型识别方法[J]. 雷达学报, 2022, 11(5): 897–908. doi: 10.12000/JR22143.
CHEN Siwei, CUI Xingchao, LI Mingdian, et al. SAR image active jamming type recognition based on deep CNN model[J]. Journal of Radars, 2022, 11(5): 897–908. doi: 10.12000/JR22143.
|
| [22] |
汪日超. 星载SAR压制式干扰与抗干扰技术研究[D]. [硕士论文], 电子科技大学, 2017.
WANG Richao. Research on spaceborne SAR compression interference and anti - jamming technology[D]. [Master dissertation], University of Electronic Science and Technology of China, 2025.
|
| [23] |
黄大通, 邢世其, 李永祯, 等. 基于乘积调制的SAR灵巧干扰方法[J]. 系统工程与电子技术, 2021, 43(11): 3160–3168. doi: 10.12305/j.issn.1001-506X.2021.11.15.
HUANG Datong, XING Shiqi, LI Yongzhen, et al. Smart jamming method against SAR based on multiplication modulation[J]. Systems Engineering and Electronics, 2021, 43(11): 3160–3168. doi: 10.12305/j.issn.1001-506X.2021.11.15.
|
| [24] |
房明星, 王杰贵, 雷磊. SAR雷达二维噪声卷积调制干扰研究[J]. 现代防御技术, 2014, 42(2): 139–144,160. doi: 10.3969/j.issn.1009-086x.2014.02.025.
FANG Mingxing, WANG Jiegui, and LEI Lei. Study on 2D noise convolution modulation jamming to SAR[J]. Modern Defence Technology, 2014, 42(2): 139–144,160. doi: 10.3969/j.issn.1009-086x.2014.02.025.
|
| [25] |
丁毅. 基于多维域分析的SAR射频干扰抑制方法研究[D]. [博士论文], 西安电子科技大学, 2022. doi: 10.27389/d.cnki.gxadu.2022.003158.
DING Yi. Research on SAR radio frequency interference mitigation method using multidimensional analysis[D]. [Ph.D. dissertation], Xidian University, 2022. doi: 10.27389/d.cnki.gxadu.2022.003158.
|
| [26] |
SHEN Jiayuan, HAN Bing, PAN Zongxu, et al. Learning time–frequency information with prior for SAR radio frequency interference suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5239716. doi: 10.1109/TGRS.2022.3225499.
|
| [27] |
LI Ning, ZHANG Hengrui, LV Zongsen, et al. Simultaneous screening and detection of RFI from massive SAR images: A case study on European sentinel-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5231917. doi: 10.1109/TGRS.2022.3191815.
|
| [28] |
刘一兵, 罗强, 刘记红, 等. 基于分段移频调制的间歇采样重复转发干扰[J]. 电子信息对抗技术, 2023, 38(4): 5–12. doi: 10.3969/j.issn.1674-2230.2023.04.002.
LIU Yibing, LUO Qiang, LIU Jihong, et al. Interrupted-sampling repetitive repeater jamming based on segmented shift-frequency modulation[J]. Electronic Information Warfare Technology, 2023, 38(4): 5–12. doi: 10.3969/j.issn.1674-2230.2023.04.002.
|
| [29] |
张养瑞, 李云杰, 李曼玲, 等. 间歇采样非均匀重复转发实现多假目标压制干扰[J]. 电子学报, 2016, 44(1): 46–53. doi: 10.3969/j.issn.0372-2112.2016.01.008.
ZHANG Yangrui, LI Yunjie, LI Manling, et al. Suppress jamming technique of multiple false targets on interrupted-sampling and non-uniform periodic repeater[J]. Acta Electronica Sinica, 2016, 44(1): 46–53. doi: 10.3969/j.issn.0372-2112.2016.01.008.
|
| [30] |
孙宗正, 刘智星, 肖国尧, 等. 非均匀间歇采样转发干扰对脉内捷变雷达影响分析[J]. 系统工程与电子技术, 2024, 46(5): 1544–1554. doi: 10.12305/j.issn.1001-506X.2024.05.09.
SUN Zongzheng, LIU Zhixing, XIAO Guoyao, et al. Analysis of the influence of non uniform interrupted sampling repeater jamming on intra-pulse agile radar[J]. Systems Engineering and Electronics, 2024, 46(5): 1544–1554. doi: 10.12305/j.issn.1001-506X.2024.05.09.
|
| [31] |
周政, 唐宏, 张永顺. LFM脉压雷达的随机移频干扰研究[J]. 现代防御技术, 2010, 38(1): 103–108. doi: 10.3969/j.issn.1009-086x.2010.01.023.
ZHOU Zheng, TANG Hong, and ZHANG Yongshun. Randomly shift frequency jamming to LFM pulse compression radar[J]. Modern Defence Technology, 2010, 38(1): 103–108. doi: 10.3969/j.issn.1009-086x.2010.01.023.
|
| [32] |
黄洪旭, 黄知涛, 周一宇. 对合成孔径雷达的随机移频干扰[J]. 信号处理, 2007, 23(1): 41–45. doi: 10.3969/j.issn.1003-0530.2007.01.009.
HUANG Hongxu, HUANG Zhitao, and ZHOU Yiyu. Randomly-shift-frequency jamming style to SAR[J]. Signal Processing, 2007, 23(1): 41–45. doi: 10.3969/j.issn.1003-0530.2007.01.009.
|
| [33] |
蔡幸福, 张雄美, 宋建社, 等. 基于脉间分段随机移频的合成孔径雷达干扰技术及其应用模型[J]. 兵工学报, 2015, 36(11): 2196–2202. doi: 10.3969/j.issn.1000-1093.2015.11.027.
CAI Xingfu, ZHANG Xiongmei, SONG Jianshe, et al. A jamming approach to SAR based on inter-pulse subsection random frequency-shift technique and its application[J]. Acta Armamentarii, 2015, 36(11): 2196–2202. doi: 10.3969/j.issn.1000-1093.2015.11.027.
|
| [34] |
和小冬, 李昀豪, 祝俊, 等. 合成孔径雷达二维失配压制干扰方法[J]. 电子信息对抗技术, 2014, 29(3): 24–28,79. doi: 10.3969/j.issn.1674-2230.2014.03.006.
HE Xiaodong, LI Yunhao, ZHU Jun, et al. A Bi-dimensional mismatching suppressed jamming for countering SAR[J]. Electronic Information Warfare Technology, 2014, 29(3): 24–28,79. doi: 10.3969/j.issn.1674-2230.2014.03.006.
|
| [35] |
LI Bodong and GAO Xieping. Lattice structure for regular linear phase paraunitary filter bank with odd decimation factor[J]. IEEE Signal Processing Letters, 2014, 21(1): 14–17. doi: 10.1109/LSP.2013.2285435.
|
| [36] |
LUO Xiaotong, XIE Yuan, ZHANG Yulun, et al. LatticeNet: Towards lightweight image super-resolution with lattice block[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020. doi: 10.1007/978-3-030-58542-6_17.
|
| [37] |
WANG Zheyuan, LI Liangliang, XUE Yuan, et al. FeNet: Feature enhancement network for lightweight remote-sensing image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5622112. doi: 10.1109/TGRS.2022.3168787.
|
| [38] |
DING Xiaohan, ZHANG Yiyuan, GE Yixiao, et al. UniRepLKNet: A universal perception large-kernel ConvNet for audio, video, point cloud, time-series and image recognition[C]. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 5513–5524. doi: 10.1109/CVPR52733.2024.00527.
|
| [39] |
CHEN Honghao, CHU Xiangxiang, REN Yongjian, et al. PeLK: Parameter-efficient large kernel ConvNets with peripheral convolution[C]. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 5557–5567. doi: 10.1109/CVPR52733.2024.00531.
|
| [40] |
HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141. doi: 10.1109/CVPR.2018.00745.
|
| [41] |
MAO Anqi, MOHRI M, and ZHONG Yutao. Cross-entropy loss functions: Theoretical analysis and applications[C]. The 40th International Conference on Machine Learning, Honolulu, USA, 2023.
|
| [42] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2): 336–359. doi: 10.1007/s11263-019-01228-7.
|
| [43] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
|
| [44] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
| [45] |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]. The Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, USA, 2016: 4278–4284.
|
| [46] |
CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1800–1807. doi: 10.1109/CVPR.2017.195.
|
| [47] |
SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4510–4520. doi: 10.1109/CVPR.2018.00474.
|