| Citation: | SONG Jiale, LIU Niutao, JIN Yaqiu, et al. Electromagnetic scattering modeling of rough surfaces and selection of Chang’e-7 SAR polarimetric lunar calibration fields[J]. Journal of Radars, in press. doi: 10.12000/JR25194 |
| [1] |
LEE J S, GRUNES M R, and DE GRANDI G. Polarimetric SAR speckle filtering and its implication for classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2363–2373. doi: 10.1109/36.789635.
|
| [2] |
CLOUDE S R and POTTIER E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498–518. doi: 10.1109/36.485127.
|
| [3] |
CAMPBELL D B, CAMPBELL B A, CARTER L M, et al. No evidence for thick deposits of ice at the lunar south pole[J]. Nature, 2006, 443(7113): 835–837. doi: 10.1038/nature05167.
|
| [4] |
GAO Yao, ZHAO Fei, HOU Wentao, et al. Analysis of rock abundance on lunar surface and near-surface using Mini-RF SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 9590–9605. doi: 10.1109/JSTARS.2023.3323510.
|
| [5] |
SPUDIS P D, BUSSEY D B J, BALOGA S M, et al. Initial results for the north pole of the Moon from Mini-SAR, Chandrayaan-1 mission[J]. Geophysical Research Letters, 2010, 37(6): L06204. doi: 10.1029/2009GL042259.
|
| [6] |
RANEY R K, SPUDIS P D, BUSSEY B, et al. The Lunar Mini-RF radars: Hybrid polarimetric architecture and initial results[J]. Proceedings of the IEEE, 2011, 99(5): 808–823. doi: 10.1109/JPROC.2010.2084970.
|
| [7] |
SPUDIS P D, BUSSEY D B J, BALOGA S M, et al. Evidence for water ice on the Moon: Results for anomalous polar craters from the LRO Mini-RF imaging radar[J]. Journal of Geophysical Research: Planets, 2013, 118(10): 2016–2029. doi: 10.1002/jgre.20156.
|
| [8] |
BHIRAVARASU S S, CHAKRABORTY T, PUTREVU D, et al. Chandrayaan-2 dual-frequency synthetic aperture radar (DFSAR): Performance characterization and initial results[J]. The Planetary Science Journal, 2021, 2(4): 134. doi: 10.3847/PSJ/abfdbf.
|
| [9] |
WANG Yingjie, WANG R, LIU Kaiyu, et al. Lunar microwave imaging radar (LMIR)[C]. The 14th European Conference on Synthetic Aperture Radar, Leipzig, Germany, 2022: 1–3.
|
| [10] |
WANG Chi, JIA Yingzhuo, XUE Changbin, et al. Scientific objectives and payload configuration of the Chang’E-7 mission[J]. National Science Review, 2024, 11(2): nwad329. doi: 10.1093/nsr/nwad329.
|
| [11] |
VAN ZYL J J. Calibration of polarimetric radar images using only image parameters and trihedral corner reflector responses[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(3): 337–348. doi: 10.1109/36.54360.
|
| [12] |
SARABANDI K. Calibration of a polarimetric synthetic aperture radar using a known distributed target[C]. IEEE International Geoscience and Remote Sensing Symposium, Tokyo, Japan, 1993: 968–970. doi: 10.1109/IGARSS.1993.322167.
|
| [13] |
MCKERRACHER P L, JENSEN J R, SEQUEIRA H B, et al. Mini-RF calibration, a unique approach to on-orbit synthetic aperture radar system calibration[C]. The 41st Lunar and Planetary Science Conference (LPSC XLI), The Woodlands, USA, 2010: 2352.
|
| [14] |
TANG Zhencheng, LIU Jianjun, WANG Xing, et al. Physical and mechanical characteristics of lunar soil at the Chang’E-4 landing site[J]. Geophysical Research Letters, 2020, 47(22): e2020GL089499. doi: 10.1029/2020GL089499.
|
| [15] |
WU Bo, LI Yuan, LIU W C, et al. Centimeter-resolution topographic modeling and fine-scale analysis of craters and rocks at the Chang’E-4 landing site[J]. Earth and Planetary Science Letters, 2021, 553: 116666. doi: 10.1016/j.jpgl.2020.116666.
|
| [16] |
LI Yueyang and FA Wenzhe. Centimeter-scale surface roughness of the Chang’E landing regions and implications for radar scattering mechanisms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4510316. doi: 10.1109/TGRS.2024.3454034.
|
| [17] |
ULABY F T and LONG D G. Microwave Radar and Radiometric Remote Sensing[M]. Ann Arbor, USA: University of Michigan Press, 2014: 451–452.
|
| [18] |
FUNG A K. Microwave Scattering and Emission Models and Their Applications[M]. Boston, USA, Artech House, 1994: 232–245.
|
| [19] |
PANCIERA R, TANASE M A, LOWELL K, et al. Evaluation of IEM, Dubois, and Oh radar backscatter models using airborne L-band SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4966–4979. doi: 10.1109/TGRS.2013.2286203.
|
| [20] |
CHEN Kunshan, WU T D, and FUNG A K. A study of backscattering from multiscale rough surface[J]. Journal of Electromagnetic Waves and Applications, 1998, 12(7): 961–979. doi: 10.1163/156939398X01187.
|
| [21] |
YANG Ying, CHEN Kunshan, and JIANG Rui. Modeling and analysis of microwave emission from multiscale soil surfaces using AIEM model[J]. Remote Sensing, 2022, 14(22): 5899. doi: 10.3390/rs14225899.
|
| [22] |
GUO Mingde, CHEN Kunshan, YANG Ying, et al. On the MCF model for predicting radar ocean backscatter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 2002715. doi: 10.1109/TGRS.2024.3370630.
|
| [23] |
JIN Yaqiu and XU Feng. Polarimetric Scattering and SAR Information Retrieval[M]. Hoboken, USA: John Wiley & Sons Singapore Pte. Ltd., 2013: 1–27. doi: 10.1002/9781118188149.
|
| [24] |
TSANG L and KONG J A. Scattering of Electromagnetic Waves: Advanced Topics[M]. New York, USA: John Wiley & Sons, Inc., 2001: 66–72. doi: 10.1002/0471224278.
|
| [25] |
NGHIEM S V, YUEH S H, KWOK R, et al. Symmetry properties in polarimetric remote sensing[J]. Radio Science, 1992, 27(5): 693–711. doi: 10.1029/92RS01230.
|
| [26] |
SMITH D E, ZUBER M T, JACKSON G B, et al. The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission[J]. Space Science Reviews, 2010, 150(1/4): 209–241. doi: 10.1007/s11214-009-9512-y.
|
| [27] |
SU Yan, WANG Ruigang, DENG Xiangjin, et al. Hyperfine structure of regolith unveiled by Chang’E-5 lunar regolith penetrating radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5110414. doi: 10.1109/TGRS.2022.3148200.
|
| [28] |
CASELLA G and BERGER R L. Statistical Inference[M]. 2nd ed. Pacific Grove, USA: Thomson Learning, 2002: 432–442.
|