| Citation: | DENG Kun, TIAN Xinran, YIN Chenxiao, et al. Fifth-order NCS algorithm for high-speed squint-forward-looking SAR imaging with low derivation complexity[J]. Journal of Radars, in press. doi: 10.12000/JR25187 |
| [1] |
CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston: Artech House, 2005: 225–362.
|
| [2] |
CHEN Xing, DONG Zhen, ZHANG Zehua, et al. Very high resolution synthetic aperture radar systems and imaging: A review[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 7104–7123. doi: 10.1109/JSTARS.2024.3374429.
|
| [3] |
李春升, 杨威, 王鹏波. 星载SAR成像处理算法综述[J]. 雷达学报, 2013, 2(1): 111–122. doi: 10.3724/SP.J.1300.2013.20071.
LI Chunsheng, YANG Wei, and WANG Pengbo. A review of spaceborne SAR algorithm for image formation[J]. Journal of Radars, 2013, 2(1): 111–122. doi: 10.3724/SP.J.1300.2013.20071.
|
| [4] |
邢孟道, 林浩, 陈溅来, 等. 多平台合成孔径雷达成像算法综述[J]. 雷达学报, 2019, 8(6): 732–757. doi: 10.12000/JR19102.
XING Mengdao, LIN Hao, CHEN Jianlai, et al. A review of imaging algorithms in multi-platform-borne synthetic aperture radar[J]. Journal of Radars, 2019, 8(6): 732–757. doi: 10.12000/JR19102.
|
| [5] |
MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301.
|
| [6] |
DENG Kun, HUANG Yan, CHEN Zhanye, et al. A modified frequency nonlinear chirp scaling algorithm for high-speed high-squint synthetic aperture radar with curved trajectory[J]. Remote Sensing, 2024, 16(9): 1588. doi: 10.3390/rs16091588.
|
| [7] |
ZHANG Lei, QIAO Zhijun, XING Mengdao, et al. A robust motion compensation approach for UAV SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(8): 3202–3218. doi: 10.1109/TGRS.2011.2180392.
|
| [8] |
李亚超, 王家东, 张廷豪, 等. 弹载雷达成像技术发展现状与趋势[J]. 雷达学报, 2022, 11(6): 943–973. doi: 10.12000/JR22119.
LI Yachao, WANG Jiadong, ZHANG Tinghao, et al. Present situation and prospect of missile-borne radar imaging technology[J]. Journal of Radars, 2022, 11(6): 943–973. doi: 10.12000/JR22119.
|
| [9] |
邢孟道, 马鹏辉, 楼屹杉, 等. 合成孔径雷达快速后向投影算法综述[J]. 雷达学报(中英文), 2024, 13(1): 1–22. doi: 10.12000/JR23183.
XING Mengdao, MA Penghui, LOU Yishan, et al. Review of fast back projection algorithms in synthetic aperture radar[J]. Journal of Radars, 2024, 13(1): 1–22. doi: 10.12000/JR23183.
|
| [10] |
LIANG Yi, LI Guofei, WEN Jun, et al. A fast time-domain SAR imaging and corresponding autofocus method based on hybrid coordinate system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8627–8640. doi: 10.1109/TGRS.2019.2921917.
|
| [11] |
LOU Yishan, LIN Hao, LI Ning, et al. A prior 2-D autofocus algorithm with ground Cartesian BP imaging for curved trajectory SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 2422–2436. doi: 10.1109/JSTARS.2023.3346942.
|
| [12] |
LOU Yishan, XING Mengdao, LIN Hao, et al. A time-domain processing framework for airborne and vehicle-borne microwave photonic SAR with a resolution of 0.02 m[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5211420. doi: 10.1109/TGRS.2025.3565299.
|
| [13] |
LU Jingyue, ZHANG Lei, and MENG Zhichao. A pulse-by-pulse Doppler ambiguity resolving algorithm for FLMC-SAR imaging based on fast factorized back-projection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5205419. doi: 10.1109/TGRS.2024.3351766.
|
| [14] |
BIE Bowen, XING Mengdao, XIA Xianggen, et al. A frequency domain backprojection algorithm based on local Cartesian coordinate and subregion range migration correction for high-squint SAR mounted on maneuvering platforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12): 7086–7101. doi: 10.1109/TGRS.2018.2848249.
|
| [15] |
CHEN Xiaoxiang, SUN Guangcai, XING Mengdao, et al. Ground Cartesian back-projection algorithm for high squint diving TOPS SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5812–5827. doi: 10.1109/TGRS.2020.3011589.
|
| [16] |
XIONG Tao, XING Mengdao, XIA Xianggen, et al. New applications of omega-K algorithm for SAR data processing using effective wavelength at high squint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3156–3169. doi: 10.1109/TGRS.2012.2213342.
|
| [17] |
XING Mengdao, WU Yufeng, ZHANG Y D, et al. Azimuth resampling processing for highly squinted synthetic aperture radar imaging with several modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4339–4352. doi: 10.1109/TGRS.2013.2281454.
|
| [18] |
CHEN Jianlai, XIONG Rongqi, YU Hanwen, et al. Nonparametric full-aperture autofocus imaging for microwave photonic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5214815. doi: 10.1109/TGRS.2024.3411392.
|
| [19] |
MAO Xinhua. Spherical geometry algorithm for spaceborne synthetic aperture radar imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5217215. doi: 10.1109/TGRS.2024.3427014.
|
| [20] |
DING Zegang, ZHENG Pengnan, LI Han, et al. Spaceborne high-squint high-resolution SAR imaging based on two-dimensional spatial-variant range cell migration correction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5240114. doi: 10.1109/TGRS.2022.3222230.
|
| [21] |
LI Yachao, ZHANG Tinghao, MEI Haiwen, et al. Focusing translational-variant bistatic forward-looking SAR data using the modified omega-K algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5203916. doi: 10.1109/TGRS.2021.3063780.
|
| [22] |
DESAI M D and JENKINS W K. Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar[J]. IEEE Transactions on Image Processing, 1992, 1(4): 505–517. doi: 10.1109/83.199920.
|
| [23] |
ULANDER L M H, HELLSTEN H, and STENSTROM G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 760–776. doi: 10.1109/TAES.2003.1238734.
|
| [24] |
LI Yachao, XU Gaotian, ZHOU Song, et al. A novel CFFBP algorithm with noninterpolation image merging for bistatic forward-looking SAR focusing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5225916. doi: 10.1109/TGRS.2022.3162230.
|
| [25] |
LOU Yishan, LIU Wenkang, XING Mengdao, et al. A novel motion compensation method applicable to ground Cartesian back-projection algorithm for airborne circular SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5208917. doi: 10.1109/TGRS.2023.3276051.
|
| [26] |
AN Daoxiang, HUANG Xiaotao, JIN Tian, et al. Extended nonlinear chirp scaling algorithm for high-resolution highly squint SAR data focusing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(9): 3595–3609. doi: 10.1109/TGRS.2012.2183606.
|
| [27] |
LI Zhenyu, LIANG Yi, XING Mengdao, et al. An improved range model and omega-K-based imaging algorithm for high-squint SAR with curved trajectory and constant acceleration[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5): 656–660. doi: 10.1109/LGRS.2016.2533631.
|
| [28] |
LI Zhenyu, XING Mengdao, XING Wenjie, et al. A modified equivalent range model and wavenumber-domain imaging approach for high-resolution-high-squint SAR with curved trajectory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3721–3734. doi: 10.1109/TGRS.2017.2678763.
|
| [29] |
ZHANG Tinghao, LI Yachao, WANG Jun, et al. A modified range model and extended omega-K algorithm for high-speed-high-squint SAR with curved trajectory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5204515. doi: 10.1109/TGRS.2023.3255518.
|
| [30] |
BIE Bowen, QUAN Yinghui, SUN Guangcai, et al. A modified range model and Doppler resampling based imaging algorithm for high squint SAR on maneuvering platforms[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(11): 1923–1927. doi: 10.1109/LGRS.2019.2959660.
|
| [31] |
XI Zirui, WANG Guanyong, ZHANG Lei, et al. An improved parametric polar format algorithm for missile-borne SAR imaging with large squint angles and dive trajectories[J]. IEEE Geoscience and Remote Sensing Letters, 2025, 22: 4002705. doi: 10.1109/LGRS.2024.3522277.
|
| [32] |
LI Yongkang, ZHANG Yonghui, LIANG Junli, et al. An improved omega-K algorithm for squinted SAR with curved trajectory[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4000905. doi: 10.1109/LGRS.2023.3335650.
|
| [33] |
LI Zhenyu, XING Mengdao, LIANG Yi, et al. A frequency-domain imaging algorithm for highly squinted SAR mounted on maneuvering platforms with nonlinear trajectory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 4023–4038. doi: 10.1109/TGRS.2016.2535391.
|
| [34] |
LIANG Yi, LI Zhenyu, ZENG Letian, et al. A high-order phase correction approach for focusing HS-SAR small-aperture data of high-speed moving platforms[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(9): 4551–4561. doi: 10.1109/JSTARS.2015.2459765.
|
| [35] |
WANG Zhigui, LIU Mei, AI Gengting, et al. Focusing of bistatic SAR with curved trajectory based on extended azimuth nonlinear chirp scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 4160–4179. doi: 10.1109/TGRS.2019.2961562.
|
| [36] |
QU Tan, ZHANG Yan, and WU Jiaji. A novel AFNCS algorithm for super-resolution SAR in curve trajectory[J]. Multimedia Systems, 2021, 27(4): 837–844. doi: 10.1007/s00530-020-00715-z.
|
| [37] |
DENG Yuhui, SUN Guangcai, HAN Liang, et al. 2-D wavenumber domain autofocusing for high-resolution highly squinted SAR imaging based on equivalent broadside model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5220515. doi: 10.1109/TGRS.2023.3328392.
|
| [38] |
ZHANG Tinghao, LI Yachao, YUAN Mingze, et al. Focusing highly squinted FMCW-SAR data using the modified wavenumber-domain algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 1999–2011. doi: 10.1109/JSTARS.2023.3266886.
|
| [39] |
SUN Guangcai, JIANG Xiuwei, XING Mengdao, et al. Focus improvement of highly squinted data based on azimuth nonlinear scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2308–2322. doi: 10.1109/TGRS.2010.2102040.
|
| [40] |
ZHANG Shuangxi, XING Mengdao, XIA Xianggen, et al. Focus improvement of high-squint SAR based on azimuth dependence of quadratic range cell migration correction[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 150–154. doi: 10.1109/LGRS.2012.2195634.
|
| [41] |
CHEN Jianlai, ZHANG Junchao, YU Hanwen, et al. Blind NCS-based autofocus for airborne wide-beam SAR imaging[J]. IEEE Transactions on Computational Imaging, 2022, 8: 626–638. doi: 10.1109/TCI.2022.3194745.
|
| [42] |
LIAO Yi, LUO Zhibang, WANG Jian, et al. Processing of mosaic SAR using time frequency analysis and azimuth NCS algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4625–4639. doi: 10.1109/TAES.2023.3246433.
|
| [43] |
刘裕洲, 蔡天倚, 李亚超, 等. 联合距离方位二维NCS的星弹双基前视SAR成像算法[J]. 雷达学报, 2023, 12(6): 1202–1214. doi: 10.12000/JR23144.
LIU Yuzhou, CAI Tianyi, LI Yachao, et al. A range and azimuth combined two-dimensional NCS algorithm for spaceborne-missile bistatic forward-looking SAR[J]. Journal of Radars, 2023, 12(6): 1202–1214. doi: 10.12000/JR23144.
|
| [44] |
陈溅来, 熊毅, 徐刚, 等. 基于子图像变标的非线性轨迹SAR成像及其自聚焦方法[J]. 雷达学报, 2022, 11(6): 1098–1109. doi: 10.12000/JR22171.
CHEN Jianlai, XIONG Yi, XU Gang, et al. Nonlinear trajectory synthetic aperture radar imaging and autofocus algorithm based on sub-image nonlinear chirp scaling[J]. Journal of Radars, 2022, 11(6): 1098–1109. doi: 10.12000/JR22171.
|
| [45] |
WU Yufeng, SUN Guangcai, XIA Xianggen, et al. An azimuth frequency non-linear chirp scaling (FNCS) algorithm for TOPS SAR imaging with high squint angle[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1): 213–221. doi: 10.1109/JSTARS.2013.2258893.
|
| [46] |
LI Zhenyu, LIANG Yi, XING Mengdao, et al. Focusing of highly squinted SAR data with frequency nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(1): 23–27. doi: 10.1109/LGRS.2015.2492681.
|
| [47] |
ZENG Tao, LI Yinghe, DING Zegang, et al. Subaperture approach based on azimuth-dependent range cell migration correction and azimuth focusing parameter equalization for maneuvering high-squint-mode SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6718–6734. doi: 10.1109/TGRS.2015.2447393.
|
| [48] |
CHEN Si, ZHAO Huichang, ZHANG Shuning, et al. An extended nonlinear chirp scaling algorithm for missile borne SAR imaging[J]. Signal Processing, 2014, 99: 58–68. doi: 10.1016/j.sigpro.2013.12.017.
|
| [49] |
SUN Zhichao, WU Junjie, LI Zhongyu, et al. Highly squint SAR data focusing based on keystone transform and azimuth extended nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1): 145–149. doi: 10.1109/LGRS.2014.2329554.
|
| [50] |
NEO Y L, WONG G, and CUMMING I G. A two-dimensional spectrum for bistatic SAR processing using series reversion[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 93–96. doi: 10.1109/LGRS.2006.885862.
|
| [51] |
LI Zhenyu, CHEN Jianlai, DU Wentao, et al. Focusing of maneuvering high-squint-mode SAR data based on equivalent range model and wavenumber-domain imaging algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2419–2433. doi: 10.1109/JSTARS.2020.2993466.
|
| [52] |
李震宇. 机动平台SAR大斜视成像算法研究[D]. [博士论文], 西安电子科技大学, 2017.
LI Zhenyu. Study on high squint imaging algorithms for SAR mounted on maneuvering platforms [D]. [Ph.D. dissertation], Xidian University, 2017.
|
| [53] |
MEI Haiwen, LI Yachao, XING Mengdao, et al. A frequency-domain imaging algorithm for translational variant bistatic forward-looking SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3): 1502–1515. doi: 10.1109/TGRS.2019.2943743.
|
| [54] |
ZHANG Shuanghui, LIU Yongxiang, and LI Xiang. Fast entropy minimization based autofocusing technique for ISAR imaging[J]. IEEE Transactions on Signal Processing, 2015, 63(13): 3425–3434. doi: 10.1109/TSP.2015.2422686.
|
| [55] |
DENG Kun, HUANG Yan, CHEN Zhanye, et al. A novel sub-aperture contrast-based WPGA method for automotive SAR imaging[J]. IEEE Transactions on Intelligent Transportation Systems, 2025, 26(7): 10386–10403. doi: 10.1109/TITS.2025.3552092.
|
| [56] |
MORRISON R L, DO M N, and MUNSON D C. SAR image autofocus by sharpness optimization: A theoretical study[J]. IEEE Transactions on Image Processing, 2007, 16(9): 2309–2321. doi: 10.1109/TIP.2007.903252.
|