| Citation: | TAN Xiangdong, LENG Xiangguang, XIONG Boli, et al. Self-Supervised reinforcement learning for ship detection in SAR range-compressed domain[J]. Journal of Radars, in press. doi: 10.12000/JR25185 |
| [1] |
CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Norwood: Artech House, 2005:3-5.
|
| [2] |
徐丰, 金亚秋. 微波视觉与SAR图像智能解译[J]. 雷达学报(中英文), 2024, 13(2): 285–306. doi: 10.12000/JR23225.
XU Feng and JIN Yaqiu. Microwave vision and intelligent perception of radar imagery[J]. Journal of Radars, 2024, 13(2): 285–306. doi: 10.12000/JR23225.
|
| [3] |
李金灯, 冷祥光, 张思乾, 等. 基于分层模型的单角度SAR舰船目标图像三维形状信息提取技术[J]. 电波科学学报, 2025, 40: 1–15. doi: 10.12265/j.cjors.2025026. (查阅网上资料,未找到本条文献卷期页码信息,请确认).
LI Jindeng, LENG Xiangguang, ZHANG Siqian, et al. Three-dimensional shape information extraction technology of ship targets in single-angle SAR images based on layered model[J]. Chinese Journal of Radio Science, 2025, 40: 1–15. doi: 10.12265/j.cjors.2025026.
|
| [4] |
LUO Ru, HE Qishan, ZHAO Lingjun, et al. Geospatial contextual prior-enabled knowledge reasoning framework for fine-grained aircraft detection in panoramic SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5226213. doi: 10.1109/TGRS.2024.3487780.
|
| [5] |
CHEN Mingyao, XIA Jingyuan, LIU Tianpeng, et al. Open set recognition and category discovery framework for SAR target classification based on K-contrast loss and deep clustering[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 3489–3501. doi: 10.1109/JSTARS.2024.3353453.
|
| [6] |
张强, 王志豪, 王学谦, 等. 基于邻域显著性的可见光和SAR遥感图像海面舰船协同检测方法[J]. 雷达学报(中英文), 2024, 13(4): 885–903. doi: 10.12000/JR24037.
ZHANG Qiang, WANG Zhihao, WANG Xueqian, et al. Cooperative detection of ships in optical and SAR remote sensing images based on neighborhood saliency[J]. Journal of Radars, 2024, 13(4): 885–903. doi: 10.12000/JR24037.
|
| [7] |
ZHANG Chi, ZHANG Xi, GAO Gui, et al. Development and application of ship detection and classification datasets: A review[J]. IEEE Geoscience and Remote Sensing Magazine, 2024, 12(4): 12–45. doi: 10.1109/MGRS.2024.3450681.
|
| [8] |
ZHANG Xianghui, ZHANG Siqian, SUN Zhongzhen, et al. Cross-sensor SAR image target detection based on dynamic feature discrimination and center-aware calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5209417. doi: 10.1109/TGRS.2025.3559618.
|
| [9] |
JOSHI S K and BAUMGARTNER S V. Automatic CFAR ship detection in single–channel range-compressed airborne radar data[C]. 2019 20th International Radar Symposium (IRS), Ulm, Germany, 2019: 1–8. doi: 10.23919/IRS.2019.8768137.
|
| [10] |
LENG Xiangguang, JI Kefeng, and KUANG Gangyao. Ship detection from raw SAR echo data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5207811. doi: 10.1109/TGRS.2023.3271905.
|
| [11] |
LI Jianwei, CHEN Jie, CHENG Pu, et al. A survey on deep-learning-based real-time SAR ship detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 3218–3247. doi: 10.1109/JSTARS.2023.3244616.
|
| [12] |
崔宗勇, 王晓雅, 施君南, 等. 基于中心点回归的大场景SAR图像舰船检测方法[J]. 电波科学学报, 2022, 37(1): 153-161. doi: 10.12265/j.cjors.2020205.
CUI Zongyong, WANG Xiaoya, SHI Junnan, et al. Ship detection in large scene SAR images based on target center point regression [J]. Chinese journal of radio science, 2022, 37(1): 153-161. (in Chinese). DOI: 10.12265/j.cjors.2020205.
|
| [13] |
TAN Xiangdong, LENG Xiangguang, SUN Zhongzhen, et al. Lightweight ship detection network for SAR range-compressed domain[J]. Remote Sensing, 2024, 16(17): 3284. doi: 10.3390/rs16173284.
|
| [14] |
韩子硕,王春平,付强,等. 联合生成对抗网络和检测网络的SAR图像目标检测[J]. 国防科技大学学报, 2022, 44(3): 164–175. doi: 10.11887/j.cn.202203020.
HAN Zishuo, WANG Chunping, FU Qiang, et al. Target detection in SAR images based on joint generative adversarial network and detection network[J]. Journal of National University of Defense Technology, 2022, 44(3): 164–175. doi: 10.11887/j.cn.202203020.
|
| [15] |
SUN Zhongzhen, LENG Xiangguang, ZHANG Xianghui, et al. Arbitrary-direction SAR ship detection method for multiscale imbalance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5208921. doi: 10.1109/TGRS.2025.3559701.
|
| [16] |
TAN Xiangdong, LENG Xiangguang, LUO Ru, et al. YOLO-RC: SAR ship detection guided by characteristics of range-compressed domain[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 18834–18851. doi: 10.1109/JSTARS.2024.3478390.
|
| [17] |
WANG Chao, GUO Baolong, SONG Jiawei, et al. A novel CFAR-based ship detection method using range-compressed data for spaceborne SAR system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5215515. doi: 10.1109/TGRS.2024.3419893.
|
| [18] |
LORAN T, DA SILVA A B C, JOSHI S K, et al. Ship detection based on faster R-CNN using range-compressed airborne radar data[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 3500205. doi: 10.1109/LGRS.2022.3229141.
|
| [19] |
GAO Yuze, LI Dongying, GUO Weiwei, et al. SAR ship detection in range-compressed domain based on LSTM method[C]. IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 6422–6425. doi: 10.1109/IGARSS52108.2023.10282810.
|
| [20] |
ZENG Hongcheng, SONG Yutong, YANG Wei, et al. An Incept-TextCNN model for ship target detection in SAR range-compressed domain[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 3501305. doi: 10.1109/LGRS.2024.3351745.
|
| [21] |
AI Jiaqiu, QI Xiangyang, YU Weidong, et al. A new CFAR ship detection algorithm based on 2-D joint log-normal distribution in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 806–810. doi: 10.1109/LGRS.2010.2048697.
|
| [22] |
LI Tao, PENG Dongliang, CHEN Zhikun, et al. Superpixel-level CFAR detector based on truncated gamma distribution for SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(8): 1421–1425. doi: 10.1109/LGRS.2020.3003659.
|
| [23] |
张帆, 陆圣涛, 项德良, 等. 一种改进的高分辨率SAR图像超像素CFAR舰船检测算法[J]. 雷达学报, 2023, 12(1): 120–139. doi: 10.12000/JR22067.
ZHANG Fan, LU Shengtao, XIANG Deliang, et al. An improved superpixel-based CFAR method for high-resolution SAR image ship target detection[J]. Journal of Radars, 2023, 12(1): 120–139. doi: 10.12000/JR22067.
|
| [24] |
LI Mingdian, CUI Xingchao, and CHEN Siwei. Adaptive superpixel-level CFAR detector for SAR inshore dense ship detection[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4010405. doi: 10.1109/LGRS.2021.3059253.
|
| [25] |
ZHAO Qixin, ZHANG Zhiguo, WEI Zixiang, et al. Statistical analysis of typical clutter scenes in high resolution SAR images[C]. 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi'an, China, 2019: 1101–1105. doi: 10.1109/ICIEA.2019.8833782.
|
| [26] |
XING Xiangwei, JI Kefeng, ZOU Huanxin, et al. High resolution SAR imagery ship detection based on EXS-C-CFAR in Alpha-stable clutters[C]. 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 316–319. doi: 10.1109/IGARSS.2011.6048956.
|
| [27] |
LI Hengchao, KRYLOV V A, FAN Pingzhi, et al. Unsupervised learning of generalized gamma mixture model with application in statistical modeling of high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2153–2170. doi: 10.1109/TGRS.2015.2496348.
|
| [28] |
LENG Xiangguang, JI Kefeng, YANG Kai, et al. A bilateral CFAR algorithm for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1536–1540. doi: 10.1109/LGRS.2015.2412174.
|
| [29] |
TAO Ding, ANFINSEN S N, and BREKKE C. Robust CFAR detector based on truncated statistics in multiple-target situations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 117–134. doi: 10.1109/TGRS.2015.2451311.
|
| [30] |
PAPPAS O, ACHIM A, and BULL D. Superpixel-level CFAR detectors for ship detection in SAR imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(9): 1397–1401. doi: 10.1109/LGRS.2018.2838263.
|
| [31] |
JOSHI S K, BAUMGARTNER S V, DA SILVA A B C, et al. Range-Doppler based CFAR ship detection with automatic training data selection[J]. Remote Sensing, 2019, 11(11): 1270. doi: 10.3390/rs11111270.
|
| [32] |
LENG Xiangguang, WANG Jin, JI Kefeng, et al. Ship detection in range-compressed SAR data[C]. IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 2135–2138. doi: 10.1109/IGARSS46834.2022.9884909.
|
| [33] |
CAICEDO J C and LAZEBNIK S. Active object localization with deep reinforcement learning[C]. IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 2488–2496. doi: 10.1109/ICCV.2015.286.
|
| [34] |
BUENO M B, GIRO-I-NIETO X, MARQUÉS F, et al. Hierarchical object detection with deep reinforcement learning[M]. HEMANTH D J, ESTRELA V V. Deep Learning for Image Processing Applications. Amsterdam: IOS Press, 2017: 164–176. doi: 10.3233/978-1-61499-822-8-164.
|
| [35] |
PIRINEN A and SMINCHISESCU C. Deep reinforcement learning of region proposal networks for object detection[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6945–6954. doi: 10.1109/CVPR.2018.00726.
|
| [36] |
杜兰, 王梓霖, 郭昱辰, 等. 结合强化学习自适应候选框挑选的SAR目标检测方法[J]. 雷达学报, 2022, 11(5): 884–896. doi: 10.12000/JR22121.
DU Lan, WANG Zilin, GUO Yuchen, et al. Adaptive region proposal selection for SAR target detection using reinforcement learning[J]. Journal of Radars, 2022, 11(5): 884–896. doi: 10.12000/JR22121.
|
| [37] |
CHEN Xinlei, FAN Haoqi, GIRSHICK R, et al. Improved baselines with momentum contrastive learning[J]. arXiv: 2003.04297, 2020. doi: 10.48550/arXiv.2003.04297. (查阅网上资料,不确定文献类型及格式是否正确,请确认).
|
| [38] |
CHEN Ting, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]. The 37th International Conference on Machine Learning, 2020: 1597–1607. (查阅网上资料,未找到本条文献出版地信息,请确认).
|
| [39] |
BAR A, WANG Xin, KANTOROV V, et al. DETReg: Unsupervised pretraining with region priors for object detection[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 14585–14595. doi: 10.1109/CVPR52688.2022.01420.
|
| [40] |
DAI Zhigang, CAI Bolun, LIN Yugeng, et al. Up-detr: Unsupervised pre-training for object detection with transformers[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 1601-1610. doi: 10.1109/cvpr46437.2021.00165.
|