| Citation: | JIN Guodong, ZHANG Xifeng, ZHENG Yangcheng, et al. Advances and prospects in synthetic aperture radar waveform design[J]. Journal of Radars, in press. doi: 10.12000/JR25184 |
| [1] |
GINI F, DE MAIO A, and PATTON L. Waveform Design and Diversity for Advanced Radar Systems[M]. London: IET Press, 2012. doi: 10.1049/PBRA022E.
|
| [2] |
LEVANON N and MOZESON E. Radar Signals[M]. New York: John Wiley & Sons, 2004. doi: 10.1002/0471663085.
|
| [3] |
COOK E C and BERNFELD M. Radar Signals: An Introduction to Theory and Application[M]. New York: Academic Press, 1967.
|
| [4] |
NATHANSON F E, REILLY J P, and COHEN M N. Radar design principles-signal processing and the environment[R]. NASA STI/Recon Technical Report A, 1991.
|
| [5] |
HAYKIN S. Cognitive radar: A way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1): 30–40. doi: 10.1109/MSP.2006.1593335.
|
| [6] |
GUERCI J R. Cognitive Radar: The Knowledge-Aided Fully Adaptive Approach[M]. Boston/London: Artech House, 2010.
|
| [7] |
黎湘, 范梅梅. 认知雷达及其关键技术研究进展[J]. 电子学报, 2012, 40(9): 1863–1870. doi: 10.3969/j.issn.0372-2112.2012.09.025.
LI Xiang and FAN Meimei. Research advance on Cognitive radar and its key technology[J]. Acta Electronica Sinica, 2012, 40(9): 1863–1870. doi: 10.3969/j.issn.0372-2112.2012.09.025.
|
| [8] |
LA SCALA B F, MORAN W, and EVANS R J. Optimal adaptive waveform selection for target detection[C]. The International Conference on Radar, Adelaide, Australia, 2003: 492–496. doi: 10.1109/RADAR.2003.1278791.
|
| [9] |
BELL M R. Information theory and radar waveform design[J]. IEEE Transactions on Information Theory, 1993, 39(5): 1578–1597. doi: 10.1109/18.259642.
|
| [10] |
AKHTAR J. Orthogonal block coded ECCM schemes against repeat radar jammers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1218–1226. doi: 10.1109/TAES.2009.5259195.
|
| [11] |
DAVIS R M, FANTE R L, GUELLA T P, et al. Interference suppression via operating frequency selection[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(4): 637–645. doi: 10.1109/8.768802.
|
| [12] |
YANG Jungang, THOMPSON J, HUANG Xiaotao, et al. Random-frequency SAR imaging based on compressed sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 983–994. doi: 10.1109/TGRS.2012.2204891.
|
| [13] |
YANG Xiaopeng, ZHANG Zongao, ZENG Tao, et al. Mainlobe interference suppression based on eigen-projection processing and covariance matrix reconstruction[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1369–1372. doi: 10.1109/LAWP.2014.2339224.
|
| [14] |
LI Rongfeng, RAO Can, DAI Lingyan, et al. Combining sum-difference and auxiliary beams for adaptive monopulse in jamming[J]. Journal of Systems Engineering and Electronics, 2013, 24(3): 372–381. doi: 10.1109/JSEE.2013.00046.
|
| [15] |
YU K B and MURROW D J. Adaptive digital beamforming for angle estimation in jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 508–523. doi: 10.1109/7.937465.
|
| [16] |
GOGINENI S and NEHORAI A. Polarimetric MIMO radar with distributed antennas for target detection[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1689–1697. doi: 10.1109/TSP.2009.2036472.
|
| [17] |
GOGINENI S and NEHORAI A. Game theoretic approach for polarimetric MIMO radar waveform design[C]. 2012 International Waveform Diversity & Design Conference (WDD), Kauai, USA, 2012: 59–62. doi: 10.1109/WDD.2012.7311294.
|
| [18] |
BLUNT S D and GERLACH K. Adaptive pulse compression via MMSE estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(2): 572–584. doi: 10.1109/TAES.2006.1642573.
|
| [19] |
GERLACH K and BLUNT S D. Radar pulse compression repair[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1188–1195. doi: 10.1109/TAES.2007.4383610.
|
| [20] |
BLUNT S D and GERLACH K. Multistatic adaptive pulse compression[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 891–903. doi: 10.1109/TAES.2006.248196.
|
| [21] |
MÉNDEZ DOMÍNGUEZ E, MAGNARD C, FRIOUD M, et al. Adaptive pulse compression for range focusing in SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 2262–2275. doi: 10.1109/TGRS.2016.2641041.
|
| [22] |
RIHACZEK A W and GOLDEN R M. Range Sidelobe Suppression for Barker Codes[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, AES-7(6): 1087-1092. doi: 10.1109/TAES.1971.310209.
|
| [23] |
LEWIS B L and KRETSCHMER F F. A new class of Polyphase pulse compression codes and techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 1981, AES-17(3): 364–372. doi: 10.1109/TAES.1981.309063.
|
| [24] |
NUNN C J and COXSON G E. Polyphase pulse compression codes with optimal peak and integrated Sidelobes[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 775–781. doi: 10.1109/TAES.2009.5089560.
|
| [25] |
FRANK R. Polyphase codes with good nonperiodic correlation properties[J]. IEEE Transactions on Information Theory, 1963, 9(1): 43–45. doi: 10.1109/TIT.1963.1057798.
|
| [26] |
ZHANG N and GOLOMB S W. Polyphase sequence with low autocorrelations[J]. IEEE Transactions on Information Theory, 1993, 39(3): 1085–1089. doi: 10.1109/18.256535.
|
| [27] |
BLUNT S D, COOK M, JAKABOSKY J, et al. Polyphase-coded FM (PCFM) radar waveforms, Part I: Implementation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3): 2218–2229. doi: 10.1109/TAES.2014.130361.
|
| [28] |
BLUNT S D, JAKABOSKY J, COOK M, et al. Polyphase-coded FM (PCFM) radar waveforms, Part II: Optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3): 2230–2241. doi: 10.1109/TAES.2014.130362.
|
| [29] |
TAN P S, JAKABOSKY J, STILES J M, et al. Higher-order implementations of polyphase-coded FM radar waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 2850–2870. doi: 10.1109/TAES.2019.2897032.
|
| [30] |
BLUNT S D and MOKOLE E L. Overview of radar waveform diversity[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(11): 2–42. doi: 10.1109/MAES.2016.160071.
|
| [31] |
MOHR C A, MCCORMICK P M, TOPLIFF C A, et al. Gradient-based optimization of PCFM radar waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2): 935–956. doi: 10.1109/TAES.2020.3037403.
|
| [32] |
BLUNT S D, METCALF J, JAKABOSKY J, et al. Multi-waveform space-time adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 385–404. doi: 10.1109/TAES.2017.2650639.
|
| [33] |
SAHIN C, MCCORMICK P M, METCALF J G, et al. Power-efficient multi-beam phase-attached radar/communications[C]. 2019 IEEE Radar Conference (RadarConf), Boston, USA, 2019: 1–6. doi: 10.1109/RADAR.2019.8835583.
|
| [34] |
OWEN J, MOHR C, BLUNT S D, et al. Nonlinear radar via intermodulation of jointly optimized FM noise waveform pairs[C]. 2019 IEEE Radar Conference (RadarConf), Boston, USA, 2019: 1–6. doi: 10.1109/RADAR.2019.8835590.
|
| [35] |
COSTAS J P. A study of a class of detection waveforms having nearly ideal range—Doppler ambiguity properties[J]. Proceedings of the IEEE, 1984, 72(8): 996–1009. doi: 10.1109/PROC.1984.12967.
|
| [36] |
LIU Feng, MU Shanxiang, LYU Wanghan, et al. MIMO SAR waveform separation based on Costas-LFM signal and co-arrays for maritime surveillance[J]. Chinese Journal of Electronics, 2017, 26(1): 211–217. doi: 10.1049/cje.2016.11.015.
|
| [37] |
SONG Junxiao, BABU P, and PALOMAR D P. Sequence design to minimize the weighted integrated and peak sidelobe levels[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2051–2064. doi: 10.1109/TSP.2015.2510982.
|
| [38] |
STOICA P, HE Hao, and LI Jian. New algorithms for designing unimodular sequences with good correlation properties[J]. IEEE Transactions on Signal Processing, 2009, 57(4): 1415–1425. doi: 10.1109/TSP.2009.2012562.
|
| [39] |
CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston: Artech House, 2005.
|
| [40] |
JIN Guodong, ZHANG Xifeng, HUANG Jingkai, et al. High freedom parameterized FM (HFPFM) code: Model, correlation function, and advantages[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(5): 6284–6298. doi: 10.1109/TAES.2024.3405449.
|
| [41] |
DOERRY A W. Generating nonlinear FM chirp waveforms for radar[R]. SAND2006-5856, 2006.
|
| [42] |
XU Zhihuo, WANG R, YE Kai, et al. Simultaneous range ambiguity mitigation and sidelobe reduction using orthogonal non-linear frequency modulated (ONLFM) signals for satellite SAR imaging[J]. Remote Sensing Letters, 2018, 9(9): 829–838. doi: 10.1080/2150704X.2018.1486518.
|
| [43] |
COOK C E. A class of nonlinear FM pulse compression signals[J]. Proceedings of the IEEE, 1964, 52(11): 1369–1371. doi: 10.1109/PROC.1964.3393.
|
| [44] |
GRIFFITHS H D and VINAGRE L. Design of low-sidelobe pulse compression waveforms[J]. Electronics Letters, 1994, 30(12): 1004–1005. doi: 10.1049/el:19940644.
|
| [45] |
Cook C E , Paolillo J. A pulse compression predistortion function for efficient sidelobe reduction in a high-power radar[J]. Proceedings of the IEEE, 1964, 52(4): 377–389. doi: 10.1109/PROC.1964.2927.
|
| [46] |
FOWLE E. The design of FM pulse compression signals[J]. IEEE Transactions on Information Theory, 1964, 10(1): 61–67. doi: 10.1109/TIT.1964.1053644.
|
| [47] |
DE BUDA R. Stationary phase approximations of FM spectra[J]. IEEE Transactions on Information Theory, 1966, 12(3): 305–311. doi: 10.1109/TIT.1966.1053895.
|
| [48] |
VIZITIU I, ANTON L, POPESCU F, et al. The synthesis of some NLFM laws using the stationary phase principle[C]. 2012 10th International Symposium on Electronics and Telecommunications, Timisoara, Romania, 2012: 377–380. doi: 10.1109/ISETC.2012.6408053.
|
| [49] |
DOERRY A W. SAR processing with non-linear FM chirp waveforms[R]. SAND2006-7729, 2006. doi: 10.2172/902597.
|
| [50] |
DOERRY A W and MARQUETTE B. Shaping the spectrum of random-phase radar waveforms[R]. SAND2012-6915, 2012. doi: 10.2172/1051702.
|
| [51] |
DOERRY A W. Fine waveform control for general frequency-modulated radar waveforms[R]. SAND2016-1906, 2016.
|
| [52] |
WANG Wei, WANG Robert, ZHANG Zhimin, et al. First demonstration of airborne SAR with nonlinear FM chirp waveforms[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 247–251. doi: 10.1109/LGRS.2015.2508102.
|
| [53] |
ZHANG Yongwei, WANG Wei, WANG R, et al. A novel NLFM waveform with low sidelobes based on modified Chebyshev window[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(5): 814–818. doi: 10.1109/LGRS.2019.2930817.
|
| [54] |
COLLINS T and ATKINS P. Nonlinear frequency modulation chirps for active sonar[J]. IEE Proceedings - Radar, Sonar and Navigation, 1999, 146(6): 312–316. doi: 10.1049/Ip-rsn:19990754.
|
| [55] |
ALPHONSE S and WILLIAMSON G A. Novel radar signal models using nonlinear frequency modulation[C]. 2014 22nd European Signal Processing Conference (EUSIPCO), Lisbon, Portugal, 2014: 1024–1028.
|
| [56] |
JIN Guodong, LIU Kaiyu, DENG Yunkai, et al. Nonlinear frequency modulation signal generator in LT-1[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(10): 1570–1574. doi: 10.1109/LGRS.2019.2905359.
|
| [57] |
WANG R, LIU Kaiyu, CAI Yonghua, et al. LuTan-1: An innovative L-band spaceborne bistatic interferometric SAR mission[C]. EUSAR 2024; 15th European Conference on Synthetic Aperture Radar, Munich, Germany, 2024: 984–988.
|
| [58] |
KURDZO J M, CHEONG B L, PALMER R D, et al. Optimized NLFM pulse compression waveforms for high-sensitivity radar observations[C]. 2014 International Radar Conference, Lille, France, 2014: 1–6. doi: 10.1109/RADAR.2014.7060249.
|
| [59] |
SAEEDI J and FAEZ K. Synthetic aperture radar imaging using nonlinear frequency modulation signal[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 99–110. doi: 10.1109/TAES.2015.140310.
|
| [60] |
JIN Guodong, DENG Yunkai, WANG R, et al. An advanced nonlinear frequency modulation waveform for radar imaging with low sidelobe[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6155–6168. doi: 10.1109/TGRS.2019.2904627.
|
| [61] |
GAO Y, ZHANG X, JIN G, et al. High-resolution low-sidelobe waveform design based on HFPFM coding model[C]. IET International Radar Conference (IRC 2025), Jiaxing, China, 2025.
|
| [62] |
ANDREI N. Modern Numerical Nonlinear Optimization[M]. Cham: Springer, 2022. doi: 10.1007/978-3-031-08720-2.
|
| [63] |
WANG Wei, WANG R, DENG Yunkai, et al. Demonstration of NLFM waveforms with experiments and Doppler shift compensation for SAR application[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1999–2003. doi: 10.1109/LGRS.2016.2620284.
|
| [64] |
MILCZAREK H, LEŚNIK C, and KAWALEC A. Doppler-tolerant NLFM radar signal synthesis method[C]. 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020: 1–5. doi: 10.1109/RadarConf2043947.2020.9266657.
|
| [65] |
HUANG Jingkai, JIN Guodong, ZHANG Xifeng, et al. A formal study of the Doppler tolerance of high freedom parameterized FM (HFPFM) code[C]. IET International Radar Conference (IRC 2023), Chongqing, China, 2023: 2164–2168. doi: 10.1049/icp.2024.1422.
|
| [66] |
SHEN Biao, ZHANG Runzhe, YANG Ziyuan, et al. Orthogonal double V-linear frequency modulation waveform for simultaneous polarimetric measurement and its non-linear processing[J]. IET Radar, Sonar & Navigation, 2024, 18(10): 1919–1936. doi: 10.1049/rsn2.12627.
|
| [67] |
刘加方, 张云华, 董晓. 频率步进伪码-线性调频信号处理方法及成像[J]. 太赫兹科学与电子信息学报, 2019, 17(4): 681–685,708. doi: 10.11805/TKYDA201904.0681.
LIU Jiafang, ZHANG Yunhua, and DONG Xiao. Processing method of stepped PRBC-LFM signal and imaging[J]. Journal of Terahertz Science and Electronic Information Technology, 2019, 17(4): 681–685,708. doi: 10.11805/TKYDA201904.0681.
|
| [68] |
VILLANO M, KRIEGER G, and MOREIRA A. c[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 719–723. doi: 10.1109/LGRS.2018.2808196.
|
| [69] |
JEON S Y, KRAUS T, STEINBRECHER U, et al. Experimental demonstration of nadir echo removal in SAR using waveform diversity and dual-focus postprocessing[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4015605. doi: 10.1109/LGRS.2021.3095566.
|
| [70] |
WEN Xuejiao, QIU Xiaolan, HAN Bing, et al. A range ambiguity suppression processing method for Spaceborne SAR with up and down chirp modulation[J]. Sensors, 2018, 18(5): 1454. doi: 10.3390/s18051454.
|
| [71] |
DONG Boyuan and CHEN Zhaoxi. Azimuth ambiguity suppression for SAR via variable PRF and complex image deconvolution[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 4008705. doi: 10.1109/LGRS.2023.3302013.
|
| [72] |
QI Meng, HUANG Lijia, WANG Xiaochen, et al. Method of range ambiguity suppression combining sparse reconstruction and matched filter[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 8473–8483. doi: 10.1109/JSTARS.2022.3210907.
|
| [73] |
齐萌, 黄丽佳, 仇晓兰, 等. 一种结合稀疏重建和匹配滤波的距离模糊抑制方法[J]. 雷达学报, 2022, 11(1): 95–106. doi: 10.12000/JR21181.
QI Meng, HUANG Lijia, QIU Xiaolan, et al. Method of range ambiguity suppression combining sparse reconstruction and matched filtering[J]. Journal of Radars, 2022, 11(1): 95–106. doi: 10.12000/JR21181.
|
| [74] |
KUDO R, HIROSE A, and NATSUAKI R. Removal of synthetic aperture radar range ambiguity by observing adjacent regions[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4003405. doi: 10.1109/LGRS.2024.3359008.
|
| [75] |
LI Jieshuang, LIU Yanyang, TAO Mingliang, et al. Range ambiguity detection and suppression in spaceborne SAR image via image post-processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5214014. doi: 10.1109/TGRS.2024.3405324.
|
| [76] |
LONG Yajun, ZHAO Fengjun, ZHENG Mingjie, et al. An azimuth ambiguity suppression method based on local azimuth ambiguity-to-signal ratio estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(12): 2075–2079. doi: 10.1109/LGRS.2019.2963126.
|
| [77] |
SHEN Jiayuan, HAN Bing, PAN Zongxu, et al. Learning time–frequency information with prior for SAR radio frequency interference suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5239716. doi: 10.1109/TGRS.2022.3225499.
|
| [78] |
CEN Xi, LI Yachao, HAN Zhaoyun, et al. Self-supervised learning method for SAR multiinterference suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5220017. doi: 10.1109/TGRS.2023.3328019.
|
| [79] |
DALL J and KUSK A. Azimuth phase coding for range ambiguity suppression in SAR[C]. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, USA, 2004: 1734–1737. doi: 10.1109/IGARSS.2004.1370667.
|
| [80] |
DOERRY A W. SAR ambiguous range suppression[R]. SAND2006-5332, 2006. doi: 10.2172/893128.
|
| [81] |
BORDONI F, YOUNIS M, and KRIEGER G. Ambiguity suppression by azimuth phase coding in multichannel SAR systems[C]. 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 4457–4460. doi: 10.1109/IGARSS.2011.6050222.
|
| [82] |
祝晓静, 李飞, 王宇, 等. 基于改进方位相位编码的全极化SAR距离模糊抑制方法[J]. 雷达学报, 2017, 6(4): 420–431. doi: 10.12000/JR17015.
ZHU Xiaojing, LI Fei, WANG Yu, et al. Range ambiguity suppression approach for quad-pol SAR systems based on modified azimuth phase coding[J]. Journal of Radars, 2017, 6(4): 420–431. doi: 10.12000/JR17015.
|
| [83] |
吴玉峰, 叶少华, 冯大政. 基于方位相位编码的脉内聚束SAR成像方法[J]. 雷达学报, 2018, 7(4): 437–445. doi: 10.12000/JR17114.
WU Yufeng, YE Shaohua, and FENG Dazheng. Intra-pulse spotlight SAR imaging method based on azimuth phase coding[J]. Journal of Radars, 2018, 7(4): 437–445. doi: 10.12000/JR17114.
|
| [84] |
王岩飞, 李和平, 韩松. 雷达脉冲编码理论方法及应用[J]. 雷达学报, 2019, 8(1): 1–16. doi: 10.12000/JR19023.
WANG Yanfei, LI Heping, and HAN Song. The theory and method of pulse coding for radar and its applications[J]. Journal of Radars, 2019, 8(1): 1–16. doi: 10.12000/JR19023.
|
| [85] |
NIU Shilin, JIN Guodong, ZHANG Hanqing, et al. A novel real-time echo restoration algorithm from ambiguous signals in high-PRF SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4004305. doi: 10.1109/LGRS.2024.3362405.
|
| [86] |
CALLAGHAN G D and LONGSTAFF I D. Wide-swath space-borne SAR and range ambiguity[C]. Radar 97 (Conf. Publ. No. 449), Edinburgh, UK, 1997: 248–252. doi: 10.1049/cp:19971672.
|
| [87] |
Guo Caihong, Feng Jin, Xu Anlin, et al. Range ambiguity suppression for spaceborne SAR based on up/down chirp modulation and twice range compressions[C]. IET International Radar Conference, Online Conference, 2020: 350-354, doi: 10.1049/icp.2021.0705.
|
| [88] |
MITTERMAYER J and MARTINEZ J M. Analysis of range ambiguity suppression in SAR by up and down chirp modulation for point and distributed targets[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 4077–4079. doi: 10.1109/IGARSS.2003.1295367.
|
| [89] |
XU Wei, HUANG Pingping, and TAN Weixian. Azimuth phase coding by up and down chirp modulation for range ambiguity suppression[J]. IEEE Access, 2019, 7: 143780–143791. doi: 10.1109/ACCESS.2019.2944871.
|
| [90] |
RICHÉ V, MÉRIC S, BAUDAIS J Y, et al. Optimization of OFDM SAR signals for range ambiguity suppression[C]. 2012 9th European Radar Conference, Amsterdam, Netherlands, 2012: 278–281.
|
| [91] |
RICHÉ V, MÉRIC S, BAUDAIS J Y, et al. Investigations on OFDM signal for range ambiguity suppression in SAR configuration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4194–4197. doi: 10.1109/TGRS.2013.2280190.
|
| [92] |
SUZUKI R, NATSUAKI R, and HIROSE A. Extending observation coverage of SAR by separating range ambiguous signals using PN-sequences[C]. 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 8292–8295. doi: 10.1109/IGARSS52108.2023.10283336.
|
| [93] |
SUZUKI R, HIROSE A, and NATSUAKI R. Optimizing PN-sequences with genetic algorithm for SAR waveform diversity[C]. 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024: 11161–11164. doi: 10.1109/IGARSS53475.2024.10641712.
|
| [94] |
WANG Wenqin. Mitigating range ambiguities in high-PRF SAR with OFDM waveform diversity[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 101–105. doi: 10.1109/LGRS.2012.2193870.
|
| [95] |
WEI Tiantian, ZHANG Yongwei, LU Pingping, et al. An improved echo separation scheme with OFDM chirp waveforms for spaceborne MIMO SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4002805. doi: 10.1109/LGRS.2024.3356729.
|
| [96] |
JIN Guodong, WANG Yu, YANG Hui, et al. Precise ambiguity performance evaluation for spaceborne SAR with diverse waveforms[J]. Remote Sensing, 2023, 15(7): 1895. doi: 10.3390/rs15071895.
|
| [97] |
JIN Guodong, AUBRY A, DE MAIO A, et al. Quasi-orthogonal waveforms for ambiguity suppression in spaceborne quad-pol SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5204617. doi: 10.1109/TGRS.2021.3066590.
|
| [98] |
ZHOU Tao, JIN Guodong, WANG Yu, et al. Ambiguity suppression of airborne polarimetric SAR: Modelling, analysis and demonstration[C]. IET International Radar Conference, Jiaxing, China, 2025.
|
| [99] |
KRIEGER G, GEBERT N, and MOREIRA A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 31–46. doi: 10.1109/TGRS.2007.905974.
|
| [100] |
YOUNIS M, DE ALMEIDA F Q, VILLANO M, et al. Digital beamforming for spaceborne reflector-based synthetic aperture radar, Part 1: Basic imaging modes[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(3): 8–25. doi: 10.1109/MGRS.2021.3060543.
|
| [101] |
YOUNIS M, ALMEIDA F Q D, VILLANO M, et al. Digital beamforming for spaceborne reflector-based synthetic aperture radar, Part 2: Ultrawide-swath imaging mode[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(4): 10–31. doi: 10.1109/MGRS.2022.3200871.
|
| [102] |
XU Yihao, ZHANG Fubo, LI Wenjie, et al. A novel multi-beam SAR two-dimensional ambiguity suppression method based on azimuth phase coding[J]. Remote Sensing, 2024, 16(13): 2298. doi: 10.3390/rs16132298.
|
| [103] |
CHANG Sheng, DENG Yunkai, ZHANG Yanyan, et al. An advanced scheme for range ambiguity suppression of spaceborne SAR based on cocktail party effect[C]. 2022 IEEE International Geoscience and Remote Sensing Symposium. Kuala Lumpur, Malaysia, 2022: 2075–2078. doi: 10.1109/IGARSS46834.2022.9884347.
|
| [104] |
AMIN E J, KRIEGER G, YOUNIS M, et al. A 2-D range ambiguity suppression method based on blind source separation for multichannel SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5203117. doi: 10.1109/TGRS.2024.3355149.
|
| [105] |
DENG Yunkai, TANG Shuhe, CHANG Sheng, et al. A novel scheme for range ambiguity suppression of spaceborne SAR based on underdetermined blind source separation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5207915. doi: 10.1109/TGRS.2025.3556296.
|
| [106] |
JIN Guodong, WANG Wei, DENG Yunkai, et al. A novel range-azimuth joint modulation scheme for range ambiguity suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5207210. doi: 10.1109/TGRS.2021.3075233.
|
| [107] |
HE Hao, STOICA P, and LI Jian. Designing unimodular sequence sets with good correlations—including an application to MIMO radar[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4391–4405. doi: 10.1109/TSP.2009.2025108.
|
| [108] |
WANG Jiangtao and WANG Yongchao. Designing unimodular sequences with optimized auto/cross-correlation properties via consensus-ADMM/PDMM approaches[J]. IEEE Transactions on Signal Processing, 2021, 69: 2987–2999. doi: 10.1109/TSP.2021.3079819.
|
| [109] |
SONG Junxiao, BABU P, and PALOMAR D P. Sequence set design with good correlation properties via majorization-minimization[J]. IEEE Transactions on Signal Processing, 2016, 64(11): 2866–2879. doi: 10.1109/TSP.2016.2535312.
|
| [110] |
WANG Wenqin. Space–time coding MIMO-OFDM SAR for high-resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3094–3104. doi: 10.1109/TGRS.2011.2116030.
|
| [111] |
KIM J H, YOUNIS M, MOREIRA A, et al. A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 568–572. doi: 10.1109/LGRS.2012.2213577.
|
| [112] |
WANG Jie, LIANG Xingdong, CHEN Longyong, et al. Implementation of the OFDM chirp waveform on MIMO SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 5218–5228. doi: 10.1109/TGRS.2015.2419271.
|
| [113] |
WANG Wenqin. MIMO SAR OFDM chirp waveform diversity design with random matrix modulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1615–1625. doi: 10.1109/TGRS.2014.2346478.
|
| [114] |
邱晓燕. 基于LFM-PC复合调制信号的SAR波形抗干扰技术研究[D]. [硕士论文], 南京航空航天大学, 2017.
QIU Xiaoyan. Research on SAR anti-jamming technique based on LFM-PC waveform design[D]. [Master dissertation], Nanjing University of Aeronautics and Astronautics, 2017.
|
| [115] |
程远. 雷达主瓣干扰抑制及抗干扰波形优化技术研究[D]. [博士论文], 南京航空航天大学, 2022.
CHENG Yuan. Research on radar Mainlobe jamming suppression and anti-jamming waveform optimization technology[D]. [Ph.D. dissertation], Nanjing University of Aeronautics and Astronautics, 2022.
|
| [116] |
CHENG Yuan, ZHANG Jindong, LI Chen, et al. Orthogonal anti-jamming waveform design with extended Doppler tolerance based on the LFM-PC signal[J]. Digital Signal Processing, 2022, 122: 103334. doi: 10.1016/j.dsp.2021.103334.
|
| [117] |
XIE Qinqu, YANG Jiyao, LIU Chenyu, et al. Low sidelobe quasi-orthogonal NLFM waveforms with reciprocating frequency modulation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4027805. doi: 10.1109/LGRS.2022.3214570.
|
| [118] |
WANG Qinglu, ZHANG Xifeng, GAO Yu, et al. Based on GRU Neural Network-Designed Waveforms for Spaceborne SAR Anti-Jamming Methods[C]. IET International Radar Conference, Jiaxing, China, 2025.
|
| [119] |
许京伟, 朱圣棋, 廖桂生, 等. 频率分集阵雷达技术探讨[J]. 雷达学报, 2018, 7(2): 167–182. doi: 10.12000/JR18023.
XU Jingwei, ZHU Shengqi, LIAO Guisheng, et al. An overview of frequency diverse array radar technology[J]. Journal of Radars, 2018, 7(2): 167–182. doi: 10.12000/JR18023.
|
| [120] |
ARAKI S, MUKAI R, MAKINO S, et al. The fundamental limitation of frequency domain blind source separation for convolutive mixtures of speech[J]. IEEE Transactions on Speech and Audio Processing, 2003, 11(2): 109–116. doi: 10.1109/TSA.2003.809193.
|
| [121] |
JIN Guodong, DENG Yunkai, WANG Wei, et al. On the SAR imaging performance analysis of alternate transmitting mode based on waveform diversity: Theory and simulation[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(9): 1553–1557. doi: 10.1109/LGRS.2019.2951432.
|
| [122] |
TAN Youshan, AN Hongyan, LI Zhongyu, et al. Complementary waveform design for SAR range Sidelobe suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5205211. doi: 10.1109/tgrs.2025.3542836.
|
| [123] |
周伟, 刘永祥, 黎湘, 等. MIMO-SAR技术发展概况及应用浅析[J]. 雷达学报, 2014, 3(1): 10–18. doi: 10.3724/SP.J.1300.2013.13074.
ZHOU Wei, LIU Yongxiang, LI Xiang, et al. Brief analysis on the development and application of multi-input multi-output synthetic aperture radar[J]. Journal of Radars, 2014, 3(1): 10–18. doi: 10.3724/SP.J.1300.2013.13074.
|
| [124] |
CERUTTI-MAORI D, SIKANETA I, KLARE J, et al. MIMO SAR processing for multichannel high-resolution wide-swath radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5034–5055. doi: 10.1109/TGRS.2013.2286520.
|
| [125] |
ENDER J H G. Along-track array processing for MIMO-SAR/MTI[C]. 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2008: 1–3.
|
| [126] |
KRIEGER G, ROMMEL T, and MOREIRA A. MIMO-SAR tomography[C]. Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 2016: 1–6.
|
| [127] |
KLARE J, WEISS M, PETERS O, et al. ARTINO: A new high resolution 3D imaging radar system on an autonomous airborne platform[C]. 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, USA, 2006: 3842–3845. doi: 10.1109/IGARSS.2006.985.
|
| [128] |
LO MONTE L, HIMED B, CORIGLIANO T, et al. Performance analysis of time division and code division waveforms in co-located MIMO[C]. 2015 IEEE Radar Conference (RadarCon), Arlington, USA, 2015: 794–798. doi: 10.1109/RADAR.2015.7131104.
|
| [129] |
BOUTE R. On the equivalence of time-division and frequency-division multiplexing[J]. IEEE Transactions on Communications, 1985, 33(1): 97–99. doi: 10.1109/TCOM.1985.1096197.
|
| [130] |
XU Jingwei, LIAO Guisheng, ZHU Shengqi, et al. Joint range and angle estimation using MIMO radar with frequency diverse array[J]. IEEE Transactions on Signal Processing, 2015, 63(13): 3396–3410. doi: 10.1109/TSP.2015.2422680.
|
| [131] |
BORDONI F, KRIEGER G, and YOUNIS M. Multifrequency Subpulse SAR: Exploiting chirp bandwidth for an increased coverage[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(1): 40–44. doi: 10.1109/LGRS.2018.2867723.
|
| [132] |
SINGH S P and RAO K S. Polyphase coded signal design for netted radar systems[C]. 2006 CIE International Conference on Radar, Shanghai, China, 2006: 1–4. doi: 10.1109/ICR.2006.343446.
|
| [133] |
WANG Xiangyu, WANG R, DENG Yunkai, et al. Precise calibration of channel imbalance for very high resolution SAR with stepped frequency[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4252–4261. doi: 10.1109/TGRS.2017.2688728.
|
| [134] |
KRIEGER G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628–2645. doi: 10.1109/TGRS.2013.2263934.
|
| [135] |
KIM J and WIESBECK W. Investigation of a new multifunctional high performance SAR system concept exploiting MIMO technology[C]. IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, USA, 2008: II-221–II-224. doi: 10.1109/IGARSS.2008.4778967.
|
| [136] |
WANG Jie, LIANG Xingdong, CHEN Longyong, et al. A novel space–time coding scheme used for MIMO-SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1556–1560. doi: 10.1109/LGRS.2015.2412961.
|
| [137] |
HE Feng, DONG Zhen, and LIANG Diannong. A novel space–time coding Alamouti waveform scheme for MIMO-SAR implementation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2): 229–233. doi: 10.1109/LGRS.2014.2333232.
|
| [138] |
王杰, 丁赤飚, 梁兴东, 等. 机载同时同频MIMO-SAR系统研究概述[J]. 雷达学报, 2018, 7(2): 220–234. doi: 10.12000/JR17046.
WANG Jie, DING Chibiao, LIANG Xingdong, et al. Research outline of airborne MIMO-SAR system with same time-frequency coverage[J]. Journal of Radars, 2018, 7(2): 220–234. doi: 10.12000/JR17046.
|
| [139] |
JIN Guodong, DENG Yunkai, WANG Wei, et al. A novel Spaceborne MIMO-SAR imaging scheme based on improved OFDM waveforms[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(12): 2122–2126. doi: 10.1109/LGRS.2020.3013297.
|
| [140] |
ROMMEL T, RINCON R, YOUNIS M, et al. Implementation of a MIMO SAR imaging mode for NASA’s next generation airborne L-band SAR[C]. EUSAR 2018; 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2018: 1–5.
|
| [141] |
JIN Guodong, DENG Yunkai, WANG Wei, et al. Segmented phase code waveforms: A novel radar waveform for Spaceborne MIMO-SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5764–5779. doi: 10.1109/TGRS.2020.3023385.
|
| [142] |
ZHANG Yanyan, HAN Shuo, WEI Tiantian, et al. First demonstration of echo separation for orthogonal waveform encoding MIMO-SAR based on airborne experiments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5225016. doi: 10.1109/TGRS.2022.3160204.
|
| [143] |
WANG Yu, JIN Guodong, SHI Tianyue, et al. A novel MIMO-SAR echo separation solution for reducing the system complexity: Spectrum Preprocessing and segment synthesis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5206517. doi: 10.1109/TGRS.2023.3264704.
|
| [144] |
WANG Yu, ZHU Daiyin, JIN Guodong, et al. Improved DBF-MIMO-SAR waveform transmission scheme for reducing the cost of DOF in the elevation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 1566–1580. doi: 10.1109/TAES.2022.3202877.
|
| [145] |
ZHANG Yongwei, DENG Yunkai, ZHANG Zhimin, et al. A two-stage echo separation scheme for Spaceborne MIMO-HWRS SAR system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5232814. doi: 10.1109/TGRS.2022.3198143.
|
| [146] |
WEI Yihai, ZHANG Yongwei, LIU Yang, et al. Elevation-interpulse phase-coded waveform: A novel radar waveform for spaceborne MIMO-SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5213818. doi: 10.1109/TGRS.2025.3574534.
|
| [147] |
JIN Guodong, WANG Yu, ZHU Daiyin, et al. A reconfigurable MIMO-SAR transmission scheme based on inter-pulse and intra-pulse joint phase modulation[J]. IEEE Transactions on Signal Processing, 2022, 70: 4265–4276. doi: 10.1109/TSP.2022.3200873.
|
| [148] |
WANG Yu, JIN Guodong, JIANG Penghui, et al. Improved MIMO-SAR echo separation scheme with constrained/generalized LASSO regression: New insights and applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5223818. doi: 10.1109/TGRS.2024.3464541.
|
| [149] |
MOU Jingwen, WANG Yu, HONG Jun, et al. Geometric calibration of Spaceborne Bistatic SAR LT-1 for generation of high-accuracy DEM[C]. 2023 8th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 2023: 914–918. doi: 10.1109/ICSIP57908.2023.10271075.
|
| [150] |
WANG Yu, JIN Guodong, and ZHU Daiyin. Robust anti-topography-variation Beamforming technique for airborne MIMO-SAR echo separation[C]. IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 8249–8252. doi: 10.1109/IGARSS52108.2023.10282803.
|