Turn off MathJax
Article Contents
LIU Lizhi, WANG Robert, LU Pingping, et al. HEAD-1.0: spaceborne hybrid-polarimetric SAR evaluation and analysis dataset[J]. Journal of Radars, in press. doi: 10.12000/JR25183
Citation: LIU Lizhi, WANG Robert, LU Pingping, et al. HEAD-1.0: spaceborne hybrid-polarimetric SAR evaluation and analysis dataset[J]. Journal of Radars, in press. doi: 10.12000/JR25183

HEAD-1.0: Spaceborne Hybrid-polarimetric SAR Evaluation and Analysis Dataset

DOI: 10.12000/JR25183 CSTR: 32380.14.JR25183
Funds:  The National Natural Science Foundation of China (62495030, 62421001)
More Information
  • Corresponding author: WANG Robert, yuwang@mail.ie.ac.cn
  • Received Date: 2025-09-19
  • Rev Recd Date: 2025-11-24
  • Available Online: 2025-11-26
  • The spaceborne Hybrid-Polarimetric Synthetic Aperture Radar (HP-SAR) balances the acquisition of rich polarimetric information with high-performance imaging. It offers advantages such as low system complexity and reduced data acquisition costs, and has emerged as a prominent direction in multidimensional microwave remote sensing. LT-1 is China’s first radar satellite equipped with spaceborne HP imaging capability, and it is also the world’s first satellite to implement a multi-channel HP radar system. This study utilizes HP imagery from the LT-1 satellite to construct and systematically elaborate the HP-SAR Evaluation and Analytical Dataset (HEAD-1.0), thereby addressing the lack of high-quality open-source HP datasets. HEAD-1.0 aims to provide data support for the quantitative assessment of HP-SAR image quality, the development of HP-SAR technology, and the design of new satellite missions, with particular emphasis on supporting novel observational technologies for terrestrial, oceanic, and deep-space applications. It comprises three components: (1) LT-1 SAR imagery, including 30 HP-SAR images and 16 Quad-Polarimetric SAR (QP-SAR) images, covering an area of approximately 60,000 km2; (2) auxiliary data, including six optical images and digital elevation model data in the same area as SAR images; and (3) annotation data, including 28 active/passive calibrators, approximately 17 km2 of land cover classification, and 23 polygonal/linear annotated planetary analog scenes. Based on HEAD-1.0, a preliminary qualitative and quantitative study was conducted, involving HP-SAR calibration, a comparison of terrain classification between HP-SAR and QP-SAR, and an analysis of HP characterizations of planetary analog scenes. In the future, an internationally advanced polarimetric SAR benchmark database will be constructed by integrating multi-platform, multi-band, multi-angle, and multi-temporal imaging data. In particular, the future study will focus on supporting innovative research on key technologies, including planetary surface and subsurface exploration, intelligent fusion of multisource remote sensing data, and advanced interpretation algorithms for SAR imagery.

     

  • loading
  • [1]
    RANEY R K, FREEMAN A, and JORDAN R L. Improved range ambiguity performance in quad-pol SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 349–356. doi: 10.1109/TGRS.2011.2121075.
    [2]
    ZHANG Linlin, GAO Gui, CHEN Chao, et al. Compact polarimetric synthetic aperture radar for target detection: A review[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(3): 115–152. doi: 10.1109/MGRS.2022.3186904.
    [3]
    DASARI K and LOKAM A. Exploring the capability of compact polarimetry (hybrid pol) C band RISAT-1 data for land cover classification[J]. IEEE Access, 2018, 6: 57981–57993. doi: 10.1109/ACCESS.2018.2873348.
    [4]
    SINGHA S and RESSEL R. Arctic sea ice characterization using RISAT-1 compact-pol SAR imagery and feature evaluation: A case study over northeast greenland[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8): 3504–3514. doi: 10.1109/JSTARS.2017.2691258.
    [5]
    KROUPNIK G, DE LISLE D, CÔTÉ S, et al. RADARSAT constellation mission overview and status[C]. 2021 IEEE Radar Conference (RadarConf21), Atlanta, USA, 2021: 1–5. doi: 10.1109/RadarConf2147009.2021.9455298.
    [6]
    JAFARZADEH H, MAHDIANPARI M, VERMA A, et al. Crop discrimination and mapping using multi-temporal RCM compact polarimetry SAR data[C]. 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 8046–8049. doi: 10.1109/IGARSS52108.2023.10282545.
    [7]
    BRISCO B, MAHDIANPARI M, and MOHAMMADIMANESH F. Hybrid compact polarimetric SAR for environmental monitoring with the RADARSAT constellation mission[J]. Remote Sensing, 2020, 12(20): 3283. doi: 10.3390/rs12203283.
    [8]
    MOTOHKA T, KANKAKU Y, MIURA S, et al. Overview of ALOS-2 and ALOS-4 L-band SAR[C]. 2021 IEEE Radar Conference (RadarConf21), Atlanta, USA, 2021: 1–4. doi: 10.1109/RadarConf2147009.2021.9454977.
    [9]
    RANEY R K, SPUDIS P D, BUSSEY B, et al. The lunar mini-RF radars: Hybrid polarimetric architecture and initial results[J]. Proceedings of the IEEE, 2011, 99(5): 808–823. doi: 10.1109/JPROC.2010.2084970.
    [10]
    BHIRAVARASU S S, CHAKRABORTY T, PUTREVU D, et al. Chandrayaan-2 dual-frequency synthetic aperture radar (DFSAR): Performance characterization and initial results[J]. The Planetary Science Journal, 2021, 2(4): 134. doi: 10.3847/PSJ/abfdbf.
    [11]
    National Aeronautics and Space Administration. SIR-C Education Program Pre-Launch CD-ROM[M/CD]. Pasadena: JPL, 1994.
    [12]
    WEST R D, HENRIKSEN A, STEINBACH E, et al. High-resolution fully-polarimetric synthetic aperture radar dataset[J]. Discover Geoscience, 2024, 2(1): 83. doi: 10.1007/s44288-024-00090-6.
    [13]
    ALKHATIB M Q. PolSAR image classification using complex-valued multiscale attention vision transformer (CV-MsAtViT)[J]. International Journal of Applied Earth Observation and Geoinformation, 2025, 137: 104412. doi: 10.1016/j.jag.2025.104412.
    [14]
    HOCHSTUHL S, PFEFFER N, THIELE A, et al. Pol-InSAR-Island - A benchmark dataset for multi-frequency Pol-InSAR data land cover classification[J]. ISPRS Open Journal of Photogrammetry and Remote Sensing, 2023, 10: 100047. doi: 10.1016/j.ophoto.2023.100047.
    [15]
    LIU Xu, JIAO Licheng, LIU Fang, et al. PolSF: PolSAR image datasets on San Francisco[C]. The 5th IFIP TC 12 International Conference on Intelligence Science IV, Xi'an, China, 2022: 214–219. doi: 10.1007/978-3-031-14903-0_23.
    [16]
    王智睿, 赵良瑾, 汪越雷, 等. AIR-PolSAR-Seg-2.0: 大规模复杂场景极化SAR地物分类数据集[J]. 雷达学报(中英文), 2025, 14(2): 353–365. doi: 10.12000/JR24237.

    WANG Zhirui, ZHAO Liangjin, WANG Yuelei, et al. AIR-PolSAR-Seg-2.0: Polarimetric SAR ground terrain classification dataset for large-scale complex scenes[J]. Journal of Radars, 2025, 14(2): 353–365. doi: 10.12000/JR24237.
    [17]
    WANG Zhirui, ZENG Xuan, YAN Zhiyuan, et al. AIR-PolSAR-Seg: A large-scale data set for terrain segmentation in complex-scene PolSAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 3830–3841. doi: 10.1109/JSTARS.2022.3170326.
    [18]
    金燕, 仇晓兰, 潘洁, 等. MPOLSAR-1.0: 多维度SAR多波段全极化精细分类数据集[J]. 雷达学报(中英文), 2024, 13(3): 525–538. doi: 10.12000/JR24002.

    JIN Yan, QIU Xiaolan, PAN Jie, et al. MPOLSAR-1.0: Multidimensional SAR multiband fully polarized fine classification dataset[J]. Journal of Radars, 2024, 13(3): 525–538. doi: 10.12000/JR24002.
    [19]
    VAN WYCHEN W, BAYER C, COPLAND L, et al. Radarsat constellation mission derived winter glacier velocities for the St. Elias Icefield, Yukon/Alaska: 2022 and 2023[J]. Canadian Journal of Remote Sensing, 2023, 49(1): 2264395. doi: 10.1080/07038992.2023.2264395.
    [20]
    KUMAR V, RAO Y S, BHATTACHARYA A, et al. Classification assessment of real versus simulated compact and quad-pol modes of ALOS-2[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(9): 1497–1501. doi: 10.1109/LGRS.2019.2899268.
    [21]
    ZHAO Yu and BAN Yifang. RADARSAT constellation mission compact polarisation SAR data for burned area mapping with deep learning[J]. International Journal of Applied Earth Observation and Geoinformation, 2025, 141: 104615. doi: 10.1016/j.jag.2025.104615.
    [22]
    TRUONG-LOÏ M L, DUBOIS-FERNANDEZ P, POTTIER E, et al. Potentials of a compact polarimetric SAR system[C]. 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, USA, 2010: 742–745. doi: 10.1109/IGARSS.2010.5649036.
    [23]
    CHEN Jie and QUEGAN S. Calibration of spaceborne CTLR compact polarimetric low-frequency SAR using mixed radar calibrators[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(7): 2712–2723. doi: 10.1109/TGRS.2011.2109065.
    [24]
    HOU Wentao, ZHAO Fengjun, LIU Xiuqing, et al. Hybrid compact polarimetric SAR calibration considering the amplitude and phase coefficients inconsistency[J]. Remote Sensing, 2022, 14(2): 416. doi: 10.3390/rs14020416.
    [25]
    TAN Hong and HONG Jun. Calibration of compact polarimetric SAR images using distributed targets and one corner reflector[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4433–4444. doi: 10.1109/TGRS.2016.2541666.
    [26]
    OLTHOF I and RAINVILLE T. Evaluating Simulated RADARSAT Constellation Mission (RCM) Compact Polarimetry for Open-Water and Flooded-Vegetation Wetland Mapping[J]. Remote Sensing, 2020, 12(9): 1476. doi: 10.3390/rs12091476.
    [27]
    DEY S, BHATTACHARYA A, RATHA D, et al. Novel clustering schemes for full and compact polarimetric SAR data: An application for rice phenology characterization[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169: 135–151. doi: 10.1016/j.isprsjprs.2020.09.010.
    [28]
    GAO Gui, GAO Sheng, HE Juan, et al. Adaptive ship detection in hybrid-polarimetric SAR images based on the power–entropy decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5394–5407. doi: 10.1109/TGRS.2018.2815592.
    [29]
    BUONO A, NUNZIATA F, MIGLIACCIO M, et al. Polarimetric analysis of compact-polarimetry SAR architectures for sea oil slick observation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 5862–5874. doi: 10.1109/TGRS.2016.2574561.
    [30]
    SPUDIS P D, BUSSEY D B J, BALOGA S M, et al. Evidence for water ice on the Moon: Results for anomalous polar craters from the LRO Mini-RF imaging radar[J]. Journal of Geophysical Research: Planets, 2013, 118(10): 2016–2029. doi: 10.1002/jgre.20156.
    [31]
    洪文. 基于混合极化架构的极化SAR: 原理与应用(中英文)[J]. 雷达学报(中英文), 2016, 5(6): 559–595. doi: 10.12000/JR16074.

    HONG Wen. Hybrid-polarity architecture based polarimetric SAR: Principles and applications (in Chinese and in English)[J]. Journal of Radars, 2016, 5(6): 559–595. doi: 10.12000/JR16074.
    [32]
    WANG R, LIU Kaiyu, LIU Dacheng, et al. LuTan-1: An innovative L-band spaceborne bistatic interferometric synthetic aperture radar mission[J]. IEEE Geoscience and Remote Sensing Magazine, 2025, 13(2): 58–78. doi: 10.1109/MGRS.2024.3478761.
    [33]
    史磊, 孙维东, 杨乐, 等. LT-1A卫星全极化SAR辐射与极化系统误差稳定性分析: 以热带雨林场景为例[J]. 雷达学报(中英文), 2025, 14(2): 405–423. doi: 10.12000/JR24102.

    SHI Lei, SUN Weidong, YANG Le, et al. Evaluation of radiometric and polarimetric errors in the LT-1A satellite data based on tropical forests in the amazon[J]. Journal of Radars, 2025, 14(2): 405–423. doi: 10.12000/JR24102.
    [34]
    XIAO Long, WANG Jiang, DANG Yanan, et al. A new terrestrial analogue site for Mars research: The Qaidam Basin, Tibetan Plateau (NW China)[J]. Earth-Science Reviews, 2017, 164: 84–101. doi: 10.1016/j.earscirev.2016.11.003.
    [35]
    BICKEL S H and BATES R H T. Effects of magneto-ionic propagation on the polarization scattering matrix[J]. Proceedings of the IEEE, 1965, 53(8): 1089–1091. doi: 10.1109/PROC.1965.4097.
    [36]
    FREEMAN A. A new system model for radar polarimeters[J]. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(5): 761–767. doi: 10.1109/36.83991.
    [37]
    RANEY R K. Hybrid dual-polarization synthetic aperture radar[J]. Remote Sensing, 2019, 11(13): 1521. doi: 10.3390/rs11131521.
    [38]
    LI Yu, LIN Hui, ZHANG Yuanzhi, et al. Comparisons of circular transmit and linear receive compact polarimetric SAR features for oil slicks discrimination[J]. Journal of Sensors, 2015, 2015: 631561. doi: 10.1155/2015/631561.
    [39]
    DABBOOR M and GELDSETZER T. Towards sea ice classification using simulated RADARSAT Constellation Mission compact polarimetric SAR imagery[J]. Remote Sensing of Environment, 2014, 140: 189–195. doi: 10.1016/j.rse.2013.08.035.
    [40]
    TEN KATE I L, ARMSTRONG R, BERNHARDT B, et al. Mauna Kea, Hawaii, as an analog site for future planetary resource exploration: Results from the 2010 ILSO-ISRU field-testing campaign[J]. Journal of Aerospace Engineering, 2013, 26(1): 183–196. doi: 10.1061/(ASCE)AS.1943-5525.0000200.
    [41]
    DANG Yanan, XIAO Long, XU Yi, et al. The polygonal surface structures in the Dalangtan Playa, Qaidam Basin, NW China: Controlling factors for their formation and implications for analogous martian landforms[J]. Journal of Geophysical Research: Planets, 2018, 123(7): 1910–1933. doi: 10.1029/2018JE005525.
    [42]
    LASSER J, NIELD J M, ERNST M, et al. Salt polygons and porous media convection[J]. Physical Review X, 2023, 13(1): 011025. doi: 10.1103/PhysRevX.13.011025.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(37) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint