| Citation: | SU Xinyuan, QUAN Sinong, CAI Zhihao, et al. Optimal adversarial sample generation method in SAR ATR based on joint misleading and fidelity optimization[J]. Journal of Radars, in press. doi: 10.12000/JR25179 |
| [1] |
阮航, 崔家豪, 毛秀华, 等. SAR目标识别对抗攻击综述: 从数字域迈向物理域[J]. 雷达学报, 2024, 13(6): 1298–1326. doi: 10.12000/JR24142.
RUAN Hang, CUI Jiahao, MAO Xiuhua, et al. A survey of adversarial attacks on SAR target recognition: From digital domain to physical domain[J]. Journal of Radars, 2024, 13(6): 1298–1326. doi: 10.12000/JR24142.
|
| [2] |
高勋章, 张志伟, 刘梅, 等. 雷达像智能识别对抗研究进展[J]. 雷达学报, 2023, 12(4): 696–712. doi: 10.12000/JR23098.
GAO Xunzhang, ZHANG Zhiwei, LIU Mei, et al. Intelligent radar image recognition countermeasures: A review[J]. Journal of Radars, 2023, 12(4): 696–712. doi: 10.12000/JR23098.
|
| [3] |
万烜申, 刘伟, 牛朝阳, 等. 基于动量迭代快速梯度符号的SAR-ATR深度神经网络黑盒攻击算法[J]. 雷达学报, 2024, 13(3): 714–729. doi: 10.12000/JR23220.
WAN Xuanshen, LIU Wei, NIU Chaoyang, et al. Black-box attack algorithm for SAR-ATR deep neural networks based on MI-FGSM[J]. Journal of Radars, 2024, 13(3): 714–729. doi: 10.12000/JR23220.
|
| [4] |
孙浩, 陈进, 雷琳, 等. 深度卷积神经网络图像识别模型对抗鲁棒性技术综述[J]. 雷达学报, 2021, 10(4): 571–594. doi: 10.12000/JR21048.
SUN Hao, CHEN Jin, LEI Lin, et al. Adversarial robustness of deep convolutional neural network-based image recognition models: A review[J]. Journal of Radars, 2021, 10(4): 571–594. doi: 10.12000/JR21048.
|
| [5] |
李东阳, 王林元, 彭进先, 等. 基于稀疏子空间采样的信号检测网络黑盒查询对抗攻击方法[J]. 电子与信息学报, 2025, 47(8): 2808–2818. doi: 10.11999/JEIT241019.
LI Dongyang, WANG Linyuan, PENG Jinxian, et al. A black-box query adversarial attack method for signal detection networks based on sparse subspace sampling[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2808–2818. doi: 10.11999/JEIT241019.
|
| [6] |
要旭东, 郭雅萍, 刘梦阳, 等. 遥感图像中不确定性驱动的像素级对抗噪声检测方法[J]. 电子与信息学报, 2025, 47(6): 1633–1644. doi: 10.11999/JEIT241157.
YAO Xudong, GUO Yaping, LIU Mengyang, et al. An uncertainty-driven pixel-level adversarial noise detection method for remote sensing images[J]. Journal of Electronics & Information Technology, 2025, 47(6): 1633–1644. doi: 10.11999/JEIT241157.
|
| [7] |
董庆宽, 何浚霖. 基于信息瓶颈的深度学习模型鲁棒性增强方法[J]. 电子与信息学报, 2023, 45(6): 2197–2204. doi: 10.11999/JEIT220603.
DONG Qingkuan and HE Junlin. Robustness enhancement method of deep learning model based on information bottleneck[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2197–2204. doi: 10.11999/JEIT220603.
|
| [8] |
胡军, 石艺杰. 基于动量增强特征图的对抗防御算法[J]. 电子与信息学报, 2023, 45(12): 4548–4555. doi: 10.11999/JEIT221414.
HU Jun and SHI Yijie. Adversarial defense algorithm based on momentum enhanced future map[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4548–4555. doi: 10.11999/JEIT221414.
|
| [9] |
段晔鑫, 贺正芸, 张颂, 等. 针对图像分类的鲁棒物理域对抗伪装[J]. 电子学报, 2024, 52(3): 863–871. doi: 10.12263/DZXB.20221301.
DUAN Yexin, HE Zhengyun, ZHANG Song, et al. Robust physical adversarial camouflages for image classifiers[J]. Acta Electronica Sinica, 2024, 52(3): 863–871. doi: 10.12263/DZXB.20221301.
|
| [10] |
姚睿, 朱享彬, 周勇, 等. 基于重要特征的视觉目标跟踪可迁移黑盒攻击方法[J]. 电子学报, 2023, 51(4): 826–834. doi: 10.12263/DZXB.20220057.
YAO Rui, ZHU Xiangbin, ZHOU Yong, et al. Transferable black box attack on visual object tracking based on important features[J]. Acta Electronica Sinica, 2023, 51(4): 826–834. doi: 10.12263/DZXB.20220057.
|
| [11] |
吴骥, 邵文泽, 葛琦, 等. 一种基于迭代累积梯度的多层特征重要性攻击方法[J]. 电子学报, 2024, 52(11): 3798–3808. doi: 10.12263/DZXB.20230843.
WU Ji, SHAO Wenze, GE Qi, et al. A multi-layer feature importance attack method based on iterative accumulated gradients[J]. Acta Electronica Sinica, 2024, 52(11): 3798–3808. doi: 10.12263/DZXB.20230843.
|
| [12] |
鲍蕾, 陶蔚, 陶卿. 结合自适应步长策略和数据增强机制提升对抗攻击迁移性[J]. 电子学报, 2024, 52(1): 157–169. doi: 10.12263/DZXB.20220737.
BAO Lei, TAO Wei, and TAO Qing. Boosting adversarial transferability through adaptive-learning-rate with data augmentation mechanism[J]. Acta Electronica Sinica, 2024, 52(1): 157–169. doi: 10.12263/DZXB.20220737.
|
| [13] |
蔡伟, 狄星雨, 蒋昕昊, 等. 基于数据增强的车辆鲁棒对抗纹理生成[J]. 系统工程与电子技术, 2025, 47(6): 1757–1767. doi: 10.12305/j.issn.1001-506X.2025.06.04.
CAI Wei, DI Xingyu, JIANG Xinhao, et al. Vehicle robust adversarial texture generation based on data augmentation[J]. Systems Engineering and Electronics, 2025, 47(6): 1757–1767. doi: 10.12305/j.issn.1001-506X.2025.06.04.
|
| [14] |
王梓聪, 张剑. 基于雅可比显著图的电磁信号无目标平滑对抗攻击方法[J]. 系统工程与电子技术, 2025, 47(7): 2127–2135. doi: 10.12305/j.issn.1001-506X.2025.07.06.
WANG Zicong and ZHANG Jian. Electromagnetic signal no-targeted smooth adversarial attack method based on Jacobian saliency map[J]. Systems Engineering and Electronics, 2025, 47(7): 2127–2135. doi: 10.12305/j.issn.1001-506X.2025.07.06.
|
| [15] |
PENG Bowen, PENG Bo, XIA Jingyuan, et al. Towards assessing the synthetic-to-measured adversarial vulnerability of SAR ATR[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 214: 119–134. doi: 10.1016/j.isprsjprs.2024.06.004.
|
| [16] |
PENG Guobei, LIU Ming, CHEN Shichao, et al. A directional generation algorithm for SAR image based on azimuth-guided statistical generative adversarial network[J]. IEEE Transactions on Signal Processing, 2024, 72: 5406–5421. doi: 10.1109/TSP.2024.3502454.
|
| [17] |
WANG Junpeng, QUAN Sinong, XING Shiqi, et al. PSO-based fine polarimetric decomposition for ship scattering characterization[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2025, 220: 18–31. doi: 10.1016/j.isprsjprs.2024.11.015.
|
| [18] |
CAI Zhihao, XING Shiqi, QUAN Sinong, et al. A power-distribution joint optimization arrangement for multi-point source jamming system[J]. Results in Engineering, 2025, 27: 106856. doi: 10.1016/j.rineng.2025.106856.
|
| [19] |
WAN Xuanshen, LIU Wei, NIU Chaoyang, et al. Black-box universal adversarial attack for DNN-based models of SAR automatic target recognition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 8673–8696. doi: 10.1109/JSTARS.2024.3384188.
|
| [20] |
HUANG Jiankai, YIN Jiapeng, AN Mengyun, et al. Azimuth pointing calibration for rotating phased array radar based on ground clutter correlation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 1000315. doi: 10.1109/TGRS.2024.3514310.
|
| [21] |
CAI Zhihao, XING Shiqi, SU Xinyuan, et al. A joint optimization method for power and array of multi-point sources system[J]. Remote Sensing, 2025, 17(14): 2445. doi: 10.3390/rs17142445.
|
| [22] |
PENG Bowen, PENG Bo, YONG Shaowei, et al. An empirical study of fully black-box and universal adversarial attack for SAR target recognition[J]. Remote Sensing, 2022, 14(16): 4017. doi: 10.3390/rs14164017.
|
| [23] |
LIU Jiyuan, ZHANG Tao, and XIONG Huilin. PolSAR ship targets generation via the polarimetric feature guided denoising diffusion probabilistic model[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4011505. doi: 10.1109/LGRS.2024.3407147.
|
| [24] |
SUI Ran, WANG Junjie, SUN Guang, et al. A dual-polarimetric high range resolution profile modulation method based on time-modulated APCM[J]. IEEE Transactions on Antennas and Propagation, 2025, 73(2): 1007–1017. doi: 10.1109/TAP.2025.3526901.
|
| [25] |
GOODFELLOW I J, SHLENS J, and SZEGEDY C. Explaining and harnessing adversarial examples[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2012: 1–12.
|
| [26] |
WANG Jiakai, LIU Xianglong, HU Jin, et al. Adversarial examples in the physical world: A survey[EB/OL]. https://arxiv.org/abs/2311.01473, 2023.
|
| [27] |
MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[C]. The 6th International Conference on Learning Representations, Vancouver, Canada, 2018: 1–23.
|
| [28] |
DONG Yinpeng, LIAO Fangzhou, PANG Tianyu, et al. Boosting adversarial attacks with momentum[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2012: 9185–9193. doi: 10.1109/CVPR.2018.00957.
|
| [29] |
LIN Jiadong, SONG Chuanbiao, He Kun, et al. Nesterov accelerated gradient and scale invariance for adversarial attacks[C]. The 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 2020: 1–12.
|
| [30] |
WANG Xiaosen and HE Kun. Enhancing the transferability of adversarial attacks through variance tuning[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 1924–1933. doi: 10.1109/CVPR46437.2021.00196.
|
| [31] |
XIE Cihang, ZHANG Zhishuai, ZHOU Yuyin, et al. Improving transferability of adversarial examples with input diversity[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 2725–2734. doi: 10.1109/CVPR.2019.00284.
|
| [32] |
徐延杰, 孙浩, 雷琳, 等. 基于对抗攻击的SAR舰船识别卷积神经网络鲁棒性研究[J]. 信号处理, 2020, 36(12): 1965–1978. doi: 10.16798/j.issn.1003-0530.2020.12.002.
XU Yanjie, SUN Hao, LEI Lin, et al. The research for the robustness of SAR ship identification based on adversarial example[J]. Journal of Signal Processing, 2020, 36(12): 1965–1978. doi: 10.16798/j.issn.1003-0530.2020.12.002.
|
| [33] |
PAPERNOT N, MCDANIEL P, JHA S, et al. The limitations of deep learning in adversarial settings[C]. 2016 IEEE European Symposium on Security and Privacy, Saarbruecken, Germany, 2016: 372–387. doi: 10.1109/EuroSP.2016.36.
|
| [34] |
CARLINI N and WAGNER D. Towards evaluating the robustness of neural networks[C]. 2017 IEEE Symposium on Security and Privacy, San Jose, USA, 2017: 39–57. doi: 10.1109/SP.2017.49.
|
| [35] |
CHEN Pinyu, SHARMA Y, ZHANG Huan, et al. EAD: Elastic-net attacks to deep neural networks via adversarial examples[C]. The 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 10–17. doi: 10.1609/aaai.v32i1.11302.
|
| [36] |
DU Chuan, HUO Chaoying, ZHANG Lei, et al. Fast C&W: A fast adversarial attack algorithm to fool SAR target recognition with deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4010005. doi: 10.1109/LGRS.2021.3058011.
|
| [37] |
SU Jiawei, VARGAS D V, and SAKURAI K. One pixel attack for fooling deep neural networks[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5): 828–841. doi: 10.1109/TEVC.2019.2890858.
|
| [38] |
MOOSAVI-DEZFOOLI S M, FAWZI A, and FROSSARD P. DeepFool: A simple and accurate method to fool deep neural networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2574–2582. doi: 10.1109/CVPR.2016.282.
|
| [39] |
CHEN Jianbo, JORDAN M I, and WAINWRIGHT M J. HopSkipJumpAttack: A query-efficient decision-based attack[C]. 2020 IEEE Symposium on Security and Privacy, San Francisco, USA, 2020: 1277–1294. doi: 10.1109/SP40000.2020.00045.
|
| [40] |
XIE Chulin, HUANG Keli, CHEN Pinyu, et al. DBA: Distributed backdoor attacks against federated learning[C]. The 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 2020: 1–19.
|
| [41] |
QIN Weibo and WANG Feng. A universal adversarial attack on CNN-SAR image classification by feature dictionary modeling[C]. IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 1027–1030. doi: 10.1109/IGARSS46834.2022.9883668.
|
| [42] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
|
| [43] |
XIAO Chaowei, LI Bo, ZHU Junyan, et al. Generating adversarial examples with adversarial networks[C]. The 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018: 3905–3911. doi: 10.24963/ijcai.2018/543.
|
| [44] |
MANGLA P, JANDIAL S, VARSHNEY S, et al. AdvGAN++ : Harnessing latent layers for adversary generation[EB/OL]. https://arxiv.org/abs/1908.00706, 2019.
|
| [45] |
NASEER M, KHAN S, HAYAT M, et al. On generating transferable targeted perturbations[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2018: 7688–7697. doi: 10.1109/ICCV48922.2021.00761.
|
| [46] |
POURSAEED O, KATSMAN I, GAO Bicheng, et al. Generative adversarial perturbations[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4422–4431. doi: 10.1109/CVPR.2018.00465.
|
| [47] |
DU Meng, SUN Yuxin, SUN Bing, et al. TAN: A transferable adversarial network for DNN-based UAV SAR automatic target recognition models[J]. Drones, 2023, 7(3): 205. doi: 10.3390/drones7030205.
|
| [48] |
RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
|
| [49] |
LIN Gengyou, PAN Zhisong, ZHOU Xingyu, et al. Boosting adversarial transferability with shallow-feature attack on SAR images[J]. Remote Sensing, 2023, 15(10): 2699. doi: 10.3390/rs15102699.
|
| [50] |
CHEN Yuzhou, DU Jiawei, YANG Yang, et al. Positive weighted feature attack: Toward transferable adversarial attack to SAR target recognition[C]. 2023 IEEE 3rd International Conference on Electronic Technology, Communication and Information (ICETCI), Changchun, China, 2023: 93–98. doi: 10.1109/ICETCI57876.2023.10176719.
|
| [51] |
PENG Bo, PENG Bowen, ZHOU Jie, et al. Low-frequency features optimization for transferability enhancement in radar target adversarial attack[C]. The 32nd International Conference on Artificial Neural Networks and Machine Learning, Heraklion, Greece, 2023: 115–129. doi: 10.1007/978-3-031-44192-9_10.
|
| [52] |
WANG Jiafeng, CHEN Zhaoyu, JIANG Kaixun, et al. Boosting the transferability of adversarial attacks with global momentum initialization[J]. Expert Systems with Applications, 2024, 255: 124757. doi: 10.1016/j.eswa.2024.124757.
|
| [53] |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]. The 31st AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017: 4278–4284. doi: 10.1609/aaai.v31i1.11231.
|
| [54] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015: 1–14.
|
| [55] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
| [56] |
PANDYA S B, KALITA K, JANGIR P, et al. Multi-objective RIME algorithm-based techno economic analysis for security constraints load dispatch and power flow including uncertainties model of hybrid power systems[J]. Energy Reports, 2024, 11: 4423–4451. doi: 10.1016/j.egyr.2024.04.016.
|
| [57] |
ROSS T D, WORRELL S W, VELTEN V J, et al. Standard SAR ATR evaluation experiments using the MSTAR public release data set[C]. The SPIE 3370, Algorithms for Synthetic Aperture Radar Imagery V, Orlando, USA, 1998: 566–573. doi: 10.1117/12.321859.
|
| [58] |
HUANG Gao, LIU Zhuang, PLEISS G, et al. Convolutional networks with dense connectivity[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 8704–8716. doi: 10.1109/TPAMI.2019.2918284.
|
| [59] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386.
|
| [60] |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 2818–2826. doi: 10.1109/CVPR.2016.308.
|
| [61] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]. The 9th International Conference on Learning Representations, 2021: 1–21.
|
| [62] |
KALITA K, RAMESH J V N, CEPOVA L, et al. Multi-objective exponential distribution optimizer (MOEDO): A novel math-inspired multi-objective algorithm for global optimization and real-world engineering design problems[J]. Scientific Reports, 2024, 14(1): 1816. doi: 10.1038/s41598-024-52083-7.
|
| [63] |
LV Pin, WANG Ning, SU Xunwen, et al. Research on no-load air-gap magnetic field and multi-objective optimization of a three-segment Halbach PMSLM with partially magnetized poles[J]. IEEE Transactions on Magnetics, 2025, 61(9): 8102914. doi: 10.1109/TMAG.2025.3593828.
|
| [64] |
WANG Chao, LI Jian, RAO Haidi, et al. Multi-objective grasshopper optimization algorithm based on multi-group and co-evolution[J]. Mathematical Biosciences and Engineering, 2021, 18(3): 2527–2561. doi: 10.3934/mbe.2021129.
|
| [65] |
BAHRAMI B, KHAYYAMBASHI M R, and MIRJALILI S. Multiobjective placement of edge servers in MEC environment using a hybrid algorithm based on NSGA-II and MOPSO[J]. IEEE Internet of Things Journal, 2024, 11(18): 29819–29837. doi: 10.1109/JIOT.2024.3409569.
|
| [66] |
KHWAJA A S and MA Jianwei. Applications of compressed sensing for SAR moving-target velocity estimation and image compression[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(8): 2848–2860. doi: 10.1109/TIM.2011.2122190.
|
| [67] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
|
| [68] |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 213–229. doi: 10.1007/978-3-030-58452-8_13.
|