| Citation: | YAN Wenjun, LIU Kangsheng, LING Qing, et al. Survey of cross-scenario specific emitter identification technology[J]. Journal of Radars, in press. doi: 10.12000/JR25166 |
| [1] |
GOK G, ALP Y K, and ARIKAN O. A new method for specific emitter identification with results on real radar measurements[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3335–3346. doi: 10.1109/TIFS.2020.2988558.
|
| [2] |
WANG Cheng, FU Xue, WANG Yu, et al. Interpolative metric learning for few-shot specific emitter identification[J]. IEEE Transactions on Vehicular Technology, 2023, 72(12): 16851–16855. doi: 10.1109/TVT.2023.3296120.
|
| [3] |
XING Yuexiu, HU Aiqun, ZHANG Junqing, et al. Design of a robust radio-frequency fingerprint identification scheme for multimode LFM radar[J]. IEEE Internet of Things Journal, 2020, 7(10): 10581–10593. doi: 10.1109/JIOT.2020.3003692.
|
| [4] |
XU Zhengwei, HAN Guangjie, LIU Li, et al. A lightweight specific emitter identification model for IIoT devices based on adaptive broad learning[J]. IEEE Transactions on Industrial Informatics, 2023, 19(5): 7066–7075. doi: 10.1109/TII.2022.3206309.
|
| [5] |
LIN Yun, TU Ya, and DOU Zheng. An improved neural network pruning technology for automatic modulation classification in edge devices[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5): 5703–5706. doi: 10.1109/TVT.2020.2983143.
|
| [6] |
谭凯文, 张立民, 闫文君, 等. 面向非均衡类别的半监督辐射源识别方法[J]. 雷达学报, 2022, 11(4): 713–727. doi: 10.12000/JR22043.
TAN Kaiwen, ZHANG Limin, YAN Wenjun, et al. A semi-supervised emitter identification method for imbalanced category[J]. Journal of Radars, 2022, 11(4): 713–727. doi: 10.12000/JR22043.
|
| [7] |
赵雨睿, 黄知涛, 王翔. 基于相空间重构的辐射源个体识别技术综述[J]. 雷达学报, 2023, 12(4): 713–737. doi: 10.12000/JR23057.
ZHAO Yurui, HUANG Zhitao, and WANG Xiang. A review of specific emitter identification based on phase space reconstruction[J]. Journal of Radars, 2023, 12(4): 713–737. doi: 10.12000/JR23057.
|
| [8] |
张顺生, 丁宦城, 王文钦. 面向辐射源识别的多尺度特征提取与特征选择网络[J]. 国防科技大学学报, 2024, 46(6): 141–148. doi: 10.11887/j.cn.202406015.
ZHANG Shunsheng, DING Huancheng, and WANG Wenqin. Multi-scale feature extraction and feature selection network for radiation identification[J]. Journal of National University of Defense Technology, 2024, 46(6): 141–148. doi: 10.11887/j.cn.202406015.
|
| [9] |
季鹏飞. 单比特超宽带数字信道化接收机关键技术研究[D]. [博士论文], 国防科技大学, 2022. doi: 10.27052/d.cnki.gzjgu.2022.000058.
JI Pengfei. Research on key technology of monobit UWB digital channelized receiver[D]. [Ph.D. dissertation], National University of Defense Technology, 2022. doi: 10.27052/d.cnki.gzjgu.2022.000058.
|
| [10] |
CHEN Qi, YANG Lingxiao, LAI Jianhuang, et al. Self-supervised image-specific prototype exploration for weakly supervised semantic segmentation[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 4278–4288. doi: 10.1109/CVPR52688.2022.00425.
|
| [11] |
JIANG Pengtao, YANG Yuqi, HOU Qibin, et al. L2G: A simple local-to-global knowledge transfer framework for weakly supervised semantic segmentation[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 16865–16875. doi: 10.1109/CVPR52688.2022.01638.
|
| [12] |
李昕. 基于无监督学习的通信辐射源个体识别技术研究[D]. [硕士论文], 国防科技大学, 2019. doi: 10.27052/d.cnki.gzjgu.2019.000718.
LI Xin. Research on individual communication transmitter identification based on unsupervised learning[D]. [Master dissertation], National University of Defense Technology, 2019. doi: 10.27052/d.cnki.gzjgu.2019.000718.
|
| [13] |
PERSONS J B, WONG L J, MOORE M O, et al. Classification of radio signals using truncated Gaussian discriminant analysis of convolutional neural network-derived features[C]. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM), Rockville, USA, 2022: 304–310. doi: 10.1109/MILCOM55135.2022.10017724.
|
| [14] |
王天池, 俞璐. 迁移学习及其在通信辐射源个体识别中的应用[J]. 通信技术, 2022, 55(3): 265–273. doi: 10.3969/j.issn.1002-0802.2022.03.001.
WANG Tianchi and YU Lu. Transfer learning and its application in communication emitter identification[J]. Communications Technology, 2022, 55(3): 265–273. doi: 10.3969/j.issn.1002-0802.2022.03.001.
|
| [15] |
TAN Haoyue, ZHANG Zhenxi, LI Yu, et al. Multi-scale feature fusion and distribution similarity network for few-shot automatic modulation classification[J]. IEEE Signal Processing Letters, 2024, 31: 2890–2894. doi: 10.1109/LSP.2024.3470762.
|
| [16] |
马宾, 王一利, 徐健, 等. 基于双向生成对抗网络的感知哈希图像内容取证算法[J]. 计算机学报, 2023, 46(12): 2551–2572. doi: 10.11897/SP.J.1016.2023.02551.
MA Bin, WANG Yili, XU Jian, et al. A bidirectional generative adversarial network-based perceptual hash algorithm for image content forensics[J]. Chinese Journal of Computers, 2023, 46(12): 2551–2572. doi: 10.11897/SP.J.1016.2023.02551.
|
| [17] |
李奇真, 刘佳旭, 梁先明, 等. 基于深度学习的跨域辐射源个体识别综述[J]. 电讯技术, 2024, 64(7): 1163–1174. doi: 10.20079/j.issn.1001-893x.231030001.
LI Qizhen, LIU Jiaxu, LIANG Xianming, et al. Cross-domain specific emitter identification based on deep learning: A comprehensive survey[J]. Telecommunication Engineering, 2024, 64(7): 1163–1174. doi: 10.20079/j.issn.1001-893x.231030001.
|
| [18] |
张涛涛, 谢钧, 乔平娟. 基于域适应的辐射源个体识别研究综述[J]. 软件导刊, 2024, 23(6): 205–213. doi: 10.11907/rjdk.241261.
ZHANG Taotao, XIE Jun, and QIAO Pingjuan. A review of specific emitter identification based on domain adaptation[J]. Software Guide, 2024, 23(6): 205–213. doi: 10.11907/rjdk.241261.
|
| [19] |
YAN Wenjun, LING Qing, YU Keyuan, et al. A pseudolabel method with semantic drift for specific emitter identification[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(3): 6217–6235. doi: 10.1109/TAES.2025.3527960.
|
| [20] |
肖望. 面向未知类别的跨域辐射源个体识别方法研究与实现[D]. [硕士论文], 电子科技大学, 2025. doi: 10.27005/d.cnki.gdzku.2025.000389.
XIAO Wang. Research and implementation of cross-domain radiation source individual recognition method for unknown categories[D]. [Master dissertation], University of Electronic Science and Technology of China, 2025. doi: 10.27005/d.cnki.gdzku.2025.000389.
|
| [21] |
ZHA Xiong, LI Tianyun, QIU Zhaoyang, et al. Cross-receiver radio frequency fingerprint identification based on contrastive learning and subdomain adaptation[J]. IEEE Signal Processing Letters, 2023, 30: 70–74. doi: 10.1109/LSP.2023.3241592.
|
| [22] |
ZHANG Y Z, ZHOU Z N, CAO Y C, et al. Improved specific emitter identification based on margin disparity discrepancy in varying modulation scenarios[J]. IEEE Signal Processing Letters, 2025, 32: 3375–3379.
|
| [23] |
杜贵琪. 基于人工智能的射频指纹识别技术研究[D]. [硕士论文], 电子科技大学, 2022. doi: 10.27005/d.cnki.gdzku.2022.004593.
DU Guiqi. Radio frequency fingerprint identification technology study based on artificial intelligence[D]. [Master dissertation], University of Electronic Science and Technology of China, 2022. doi: 10.27005/d.cnki.gdzku.2022.004593.
|
| [24] |
YANG Lu, CAMTEPE S, GAO Yansong, et al. On the use of power amplifier nonlinearity quotient to improve radio frequency fingerprint identification in time-varying channels[C]. 2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Toronto, Canada, 2023: 1–7. doi: 10.1109/PIMRC56721.2023.10293946.
|
| [25] |
HAMDAOUI B and ELMAGHBUB A. Deep-learning-based device fingerprinting for increased LoRa-IoT security: Sensitivity to network deployment changes[J]. IEEE Network, 2022, 36(3): 204–210. doi: 10.1109/MNET.001.2100553.
|
| [26] |
王天池, 俞璐, 赫德军. 基于对抗的一致性正则半监督辐射源个体识别方法[J]. 计算机测量与控制, 2023, 31(2): 204–209. doi: 10.16526/j.cnki.11-4762/tp.2023.02.032.
WANG Tianchi, YU Lu, and HE Dejun. Individual identification method of adversarial-based consistency regularization semi-supervised emitter[J]. Computer Measurement & Control, 2023, 31(2): 204–209. doi: 10.16526/j.cnki.11-4762/tp.2023.02.032.
|
| [27] |
WANG Jian, ZHANG Bangning, ZHANG Jie, et al. Specific emitter identification based on deep adversarial domain adaptation[C]. 2021 4th International Conference on Information Communication and Signal Processing (ICICSP), Shanghai, China, 2021: 104–109. doi: 10.1109/ICICSP54369.2021.9611854.
|
| [28] |
查浩然, 刘畅, 王巨震, 等. 面向无人机辐射源个体识别的域适应模型设计[J]. 信号处理, 2024, 40(4): 650–660. doi: 10.16798/j.issn.1003-0530.2024.04.004.
ZHA Haoran, LIU Chang, WANG Juzhen, et al. Design of domain-adaptation model for specific emitter identification of UAV signal[J]. Journal of Signal Processing, 2024, 40(4): 650–660. doi: 10.16798/j.issn.1003-0530.2024.04.004.
|
| [29] |
ZHANG Maomao, WEI Guofeng, TANG Peng, et al. Semi-supervised domain adaptation for automatic modulation recognition in unseen scenarios[J]. IEEE Transactions on Cognitive Communications and Networking, 2025, 11(3): 1609–1622. doi: 10.1109/TCCN.2024.3465648.
|
| [30] |
REUS-MUNS G, JAISINGHANI D, SANKHE K, et al. Trust in 5G open RANs through machine learning: RF fingerprinting on the POWDER PAWR platform[C]. 2020 IEEE Global Communications Conference, Taipei, China, 2020: 1–6. doi: 10.1109/GLOBECOM42002.2020.9348261.
|
| [31] |
ZHANG Chuanting, DANG Shuping, ZHANG Junqing, et al. Federated radio frequency fingerprinting with model transfer and adaptation[C]. 2023 IEEE Conference on Computer Communications Workshops, Hoboken, USA, 2023: 1–6. doi: 10.1109/INFOCOMWKSHPS57453.2023.10226112.
|
| [32] |
ZHANG Xinliang, LI Tianyun, GONG Pei, et al. Variable-modulation specific emitter identification with domain adaptation[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 380–395. doi: 10.1109/TIFS.2022.3223794.
|
| [33] |
ELMAGHBUB A and HAMDAOUI B. A needle in a haystack: Distinguishable deep neural network features for domain-agnostic device fingerprinting[C]. 2023 IEEE Conference on Communications and Network Security (CNS), Orlando, USA, 2023: 1–9. doi: 10.1109/CNS59707.2023.10288752.
|
| [34] |
刘剑锋, 于宏毅, 杜剑平, 等. 基于领域自适应的动态噪声辐射源个体识别[J]. 信号处理, 2021, 37(6): 1000–1007. doi: 10.16798/j.issn.1003-0530.2021.06.012.
LIU Jianfeng, YU Hongyi, DU Jianping, et al. Specific emitter identification under dynamic noise based on domain adaptation[J]. Journal of Signal Processing, 2021, 37(6): 1000–1007. doi: 10.16798/j.issn.1003-0530.2021.06.012.
|
| [35] |
ZHENG Yanan, YING Wenwei, HONG Shaohua, et al. A method for cross-receiver specific emitter identification based on CBAM-CNN-BDA[C]. 2022 IEEE 4th International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Dali, China, 2022: 1320–1324. doi: 10.1109/ICCASIT55263.2022.9987240.
|
| [36] |
YANG Haifen, ZHANG Hao, WANG Houjun, et al. A novel approach for unlabeled samples in radiation source identification[J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 354–359. doi: 10.23919/JSEE.2022.000037.
|
| [37] |
LONG Mingsheng, CAO Yue, WANG Jianmin, et al. Learning transferable features with deep adaptation networks[C]. 32nd International Conference on Machine Learning, Lille, France, 2015: 97–105.
|
| [38] |
史萌恺. 跨接收机辐射源个体识别方法研究[D]. [硕士论文], 战略支援部队信息工程大学, 2021. doi: 10.27188/d.cnki.gzjxu.2021.000048.
SHI Mengkai. Research on cross-receiver specific emitter identification method[D]. [Master dissertation], PLA Strategic Support Force Information Engineering University, 2021. doi: 10.27188/d.cnki.gzjxu.2021.000048.
|
| [39] |
郭梁. 基于迁移学习的辐射源识别技术研究[D]. [硕士论文], 电子科技大学, 2021. doi: 10.27005/d.cnki.gdzku.2021.004912.
GUO Liang. Research on special emitter identification technology based on transfer learning[D]. [Master dissertation], University of Electronic Science and Technology of China, 2021. doi: 10.27005/d.cnki.gdzku.2021.004912.
|
| [40] |
CHANG C, HSIEH C, CHIANG C, et al. Domain-specific batch normalization for unsupervised domain adaptation[C]. CVPR, 2019: 7354–7362.
|
| [41] |
WANG Tianchi, YU Lu, WANG Wenyu, et al. Specific emitter identification based on the multi-discrepancy deep adaptation network[J]. IET Radar, Sonar & Navigation, 2022, 16(12): 2079–2088. doi: 10.1049/rsn2.12318.
|
| [42] |
WU Dongming, SHI Junpeng, LI Zhihui, et al. Contrastive semi-supervised learning with pseudo-label for radar signal automatic modulation recognition[J]. IEEE Sensors Journal, 2024, 24(19): 30399–30411. doi: 10.1109/JSEN.2024.3439704.
|
| [43] |
郑博元, 丛迅超, 胡超, 等. 自监督双流融合的小样本雷达辐射源识别方法[J]. 电讯技术, 2023, 63(9): 1340–1347. doi: 10.20079/j.issn.1001-893x.230426006.
ZHENG Boyuan, CONG Xunchao, HU Chao, et al. Few-shot radar emitter identification based on self-supervised dual-stream fusion[J]. Telecommunication Engineering, 2023, 63(9): 1340–1347. doi: 10.20079/j.issn.1001-893x.230426006.
|
| [44] |
MACKEY S, ZHAO Tianya, WANG Xuyu, et al. Cross-domain adaptation for RF fingerprinting using prototypical networks[C]. 20th ACM Conference on Embedded Networked Sensor Systems, Boston, USA, 2022: 812–813. doi: 10.1145/3560905.3568100.
|
| [45] |
CHEN Jun, WONG W K, and HAMDAOUI B. Unsupervised contrastive learning for robust RF device fingerprinting under time-domain shift[C]. IEEE International Conference on Communications, Denver, USA, 2024: 3567–3572. doi: 10.1109/ICC51166.2024.10622173.
|
| [46] |
LING Qing, YAN Wenjun, ZHANG Yuchen, et al. Transfer learning method for specific emitter identification based on pseudo-labelling and meta-learning[J]. IET Radar, Sonar & Navigation, 2024, 18(9): 1460–1473. doi: 10.1049/rsn2.12579.
|
| [47] |
WEI Haojie, FANG Min, LI Haixiang, et al. Prototype-based dual-alignment of multi-source domain adaptation for radar emitter recognition[J]. Signal Processing, 2025, 230: 109853. doi: 10.1016/j.sigpro.2024.109853.
|
| [48] |
YE Yalan, WANG Chunji, DONG Hai, et al. Cross-session specific emitter identification using adversarial domain adaptation with Wasserstein distance[C]. 2022 26th International Conference on Pattern Recognition (ICPR), Montreal, Canada, 2022: 3119–3124. doi: 10.1109/ICPR56361.2022.9956207.
|
| [49] |
朱佳明, 姚光乐, 王琛, 等. 电台辐射源个体识别的无监督域自适应方法[J]. 电子信息对抗技术, 2025, 40(3): 41–50. doi: 10.3969/j.issn.1674-2230.2025.03.006.
ZHU Jiaming, YAO Guangle, WANG Chen, et al. Unsupervised domain adaptive method for specific emitter identification of radio[J]. Electronic Information Warfare Technology, 2025, 40(3): 41–50. doi: 10.3969/j.issn.1674-2230.2025.03.006.
|
| [50] |
WANG Yong, SHU Zhehao, FENG Yinzhi, et al. Enhancing cross-domain remote sensing scene classification by multi-source subdomain distribution alignment network[J]. Remote Sensing, 2025, 17(7): 1302. doi: 10.3390/rs17071302.
|
| [51] |
LIU Jiaxu, WANG Jiao, HUANG Hao, et al. Multi-scale iterative domain adaptation for specific emitter identification[J]. Applied Intelligence, 2024, 54(8): 6299–6318. doi: 10.1007/s10489-024-05484-0.
|
| [52] |
李林, 俞璐, 蒋曾辉, 等. 基于类特征对齐的多源域适应辐射源个体识别方法[J]. 通信技术, 2023, 56(10): 1137–1145. doi: 10.3969/j.issn.1002-0802.2023.10.003.
LI Lin, YU Lu, JIANG Zenghui, et al. Special emitter identification based on multi-source domain adaptation using category feature alignment[J]. Communications Technology, 2023, 56(10): 1137–1145. doi: 10.3969/j.issn.1002-0802.2023.10.003.
|
| [53] |
ZHANG Jingbo, LIU Qingshuo, AN Shaoqian, et al. Cross-domain few-shot specific emitter identification via contrastive self-supervised learning[J]. IEEE Communications Letters, 2025, 29(7): 1564–1568. doi: 10.1109/LCOMM.2025.3568388.
|
| [54] |
YANG Jian, ZHU Shaoxian, WEN Zhongyi, et al. Cross-receiver radio frequency fingerprint identification: A source-free adaptation approach[J]. Sensors, 2025, 25(14): 4451. doi: 10.3390/s25144451.
|
| [55] |
LI Ziying, FU Xiongjun, DONG Jian, et al. Radar signal sorting via graph convolutional network and semi-supervised learning[J]. IEEE Signal Processing Letters, 2025, 32: 421–425. doi: 10.1109/LSP.2024.3519884.
|
| [56] |
ZHANG Xixi, WANG Yu, HUANG Hao, et al. Few-shot automatic modulation classification using architecture search and knowledge transfer in radar-communication coexistence scenarios[J]. IEEE Internet of Things Journal, 2024, 11(19): 32067–32078. doi: 10.1109/JIOT.2024.3423018.
|
| [57] |
BASHA N, HAMDAOUI B, SIVANESAN K, et al. Channel-resilient deep-learning-driven device fingerprinting through multiple data streams[J]. IEEE Open Journal of the Communications Society, 2023, 4: 118–133. doi: 10.1109/OJCOMS.2022.3233372.
|
| [58] |
MOHANTI S, SOLTANI N, SANKHE K, et al. AirID: Injecting a custom RF fingerprint for enhanced UAV identification using deep learning[C]. 2020 IEEE Global Communications Conference, Taipei, China, 2020: 1–6. doi: 10.1109/GLOBECOM42002.2020.9322561.
|
| [59] |
RESTUCCIA F, D’ORO S, AL-SHAWABKA A, et al. DeepFIR: Channel-robust physical-layer deep learning through adaptive waveform filtering[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 8054–8066. doi: 10.1109/TWC.2021.3089878.
|
| [60] |
D’ORO S, RESTUCCIA F, and MELODIA T. Can you fix my neural network? Real-time adaptive waveform synthesis for resilient wireless signal classification[C]. 2021 IEEE International Conference on Computer Communications, Vancouver, Canada, 2021: 1–10. doi: 10.1109/INFOCOM42981.2021.9488865.
|
| [61] |
SOLTANI N, SANKHE K, DY J, et al. More is better: Data augmentation for channel-resilient RF fingerprinting[J]. IEEE Communications Magazine, 2020, 58(10): 66–72. doi: 10.1109/MCOM.001.2000180.
|
| [62] |
SHEN Guanxiong, ZHANG Junqing, MARSHALL A, et al. Toward length-versatile and noise-robust radio frequency fingerprint identification[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 2355–2367. doi: 10.1109/TIFS.2023.3266626.
|
| [63] |
GONG Jialiang, XU Xiaodong, and LEI Yingke. Unsupervised specific emitter identification method using radio-frequency fingerprint embedded InfoGAN[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2898–2913. doi: 10.1109/TIFS.2020.2978620.
|
| [64] |
孙丽婷, 黄知涛, 王翔, 等. 辐射源指纹特征提取方法述评[J]. 雷达学报, 2020, 9(6): 1014–1031. doi: 10.12000/JR19115.
SUN Liting, HUANG Zhitao, WANG Xiang, et al. Overview of radio frequency fingerprint extraction in specific emitter identification[J]. Journal of Radars, 2020, 9(6): 1014–1031. doi: 10.12000/JR19115.
|
| [65] |
GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096–2030.
|
| [66] |
黄颖坤, 金炜东, 颜康, 等. 基于距离特征的雷达辐射源信号识别方法[J]. 系统仿真学报, 2021, 33(12): 2959–2966. doi: 10.16182/j.issn1004731x.joss.21-FZ0808.
HUANG Yingkun, JIN Weidong, YAN Kang, et al. Radar emitter signal identification via distance features[J]. Journal of System Simulation, 2021, 33(12): 2959–2966. doi: 10.16182/j.issn1004731x.joss.21-FZ0808.
|
| [67] |
史亚, 张文博, 朱明哲, 等. 雷达辐射源个体识别综述[J]. 电子与信息学报, 2022, 44(6): 2216–2229. doi: 10.11999/JEIT210161.
SHI Ya, ZHANG Wenbo, ZHU Mingzhe, et al. Specific radar emitter identification: A comprehensive review[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2216–2229. doi: 10.11999/JEIT210161.
|
| [68] |
崔邦彦, 田润澜, 王东风, 等. 基于注意力机制和改进CLDNN的雷达辐射源识别[J]. 系统工程与电子技术, 2021, 43(5): 1224–1231. doi: 10.12305/j.issn.1001-506X.2021.05.09.
CUI Bangyan, TIAN Runlan, WANG Dongfeng, et al. Radar emitter identification based on attention mechanism and improved CLDNN[J]. Systems Engineering and Electronics, 2021, 43(5): 1224–1231. doi: 10.12305/j.issn.1001-506X.2021.05.09.
|
| [69] |
刘钊, 马爽, 张梦杰, 等. 多径条件下的雷达辐射源个体识别方法[J]. 电子学报, 2023, 51(6): 1654–1665. doi: 10.12263/DZXB.20220990.
LIU Zhao, MA Shuang, ZHANG Mengjie, et al. Radar specific emitter identification method under multipath conditions[J]. Acta Electronica Sinica, 2023, 51(6): 1654–1665. doi: 10.12263/DZXB.20220990.
|
| [70] |
张立民, 谭凯文, 闫文君, 等. 基于多级跳线残差网络的雷达辐射源识别[J]. 系统工程与电子技术, 2022, 44(7): 2148–2156. doi: 10.12305/j.issn.1001-506X.2022.07.10.
ZHANG Limin, TAN Kaiwen, YAN Wenjun, et al. Radar emitter recognition based on multi-level jumper residual network[J]. Systems Engineering and Electronics, 2022, 44(7): 2148–2156. doi: 10.12305/j.issn.1001-506X.2022.07.10.
|
| [71] |
张涛涛, 谢钧, 乔平娟. 基于多源无监督域适应的辐射源个体识别方法[J]. 计算机与现代化, 2025(3): 45–51. doi: 10.3969/j.issn.1006-2475.2025.03.007.
ZHANG Taotao, XIE Jun, and QIAO Pingjuan. Specific emitter identification method based on multi-source unsupervised domain adaptation[J]. Computer and Modernization, 2025(3): 45–51. doi: 10.3969/j.issn.1006-2475.2025.03.007.
|
| [72] |
PENG Xingchao, BAI Qinxun, XIA Xide, et al. Moment matching for multi-source domain adaptation[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 1406–1415. doi: 10.1109/ICCV.2019.00149.
|
| [73] |
AWASTHI A K, GAROV A K, SHARMA M, et al. GNN model based on node classification forecasting in social network[C]. 2023 International Conference on Artificial Intelligence and Smart Communication (AISC), Greater Noida, India, 2023: 1039–1043. doi: 10.1109/AISC56616.2023.10085118.
|
| [74] |
WEN Xiaomin, FANG Shengliang, and FAN Youchen. Reconstruction of radio environment map based on multi-source domain adaptive of graph neural network for regression[J]. Sensors, 2024, 24(8): 2523. doi: 10.3390/s24082523.
|
| [75] |
AL-SHAWABKA A, RESTUCCIA F, D’ORO S, et al. Exposing the fingerprint: Dissecting the impact of the wireless channel on radio fingerprinting[C]. 2020 IEEE Conference on Computer Communications, Toronto, Canada, 2020: 646–655. doi: 10.1109/INFOCOM41043.2020.9155259.
|
| [76] |
陈翔, 汪连栋, 许雄, 等. 基于Raw I/Q和深度学习的射频指纹识别方法综述[J]. 雷达学报, 2023, 12(1): 214–234. doi: 10.12000/JR22140.
CHEN Xiang, WANG Liandong, XU Xiong, et al. A review of radio frequency fingerprinting methods based on raw I/Q and deep learning[J]. Journal of Radars, 2023, 12(1): 214–234. doi: 10.12000/JR22140.
|
| [77] |
SANKHE K, BELGIOVINE M, ZHOU Fan, et al. ORACLE: Optimized radio classification through convolutional neural networks[C]. 2019 IEEE Conference on Computer Communications, Paris, France, 2019: 370–378. doi: 10.1109/INFOCOM.2019.8737463.
|
| [78] |
HANNA S, KARUNARATNE S, and CABRIC D. WiSig: A large-scale WiFi signal dataset for receiver and channel agnostic RF fingerprinting[J]. IEEE Access, 2022, 10: 22808–22818. doi: 10.1109/ACCESS.2022.3154790.
|
| [79] |
ELMAGHBUB A and HAMDAOUI B. LoRa device fingerprinting in the wild: Disclosing RF data-driven fingerprint sensitivity to deployment variability[J]. IEEE Access, 2021, 9: 142893–142909. doi: 10.1109/ACCESS.2021.3121606.
|
| [80] |
BHARGAVA B C, DESHMUKH A, and NARASIMHADHAN A V. Modulation and signal class labelling with active learning and classification using machine learning[C]. 2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). Bangalore, India, 2022: 1–5. doi: 10.1109/CONECCTSS679.2022.9865826.
|
| [81] |
FADUL M K M, REISING D R, WEERASENA L P, et al. Improving RF-DNA fingerprinting performance in an indoor multipath environment using semi-supervised learning[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 3194–3209. doi: 10.1109/TIFS.2024.3360851.
|
| [82] |
SOLTANI N, REUS-MUNS G, SALEHI B, et al. RF fingerprinting unmanned aerial vehicles with non-standard transmitter waveforms[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15518–15531. doi: 10.1109/TVT.2020.3042128.
|
| [83] |
SHEN Guanxiong, ZHANG Junqing, MARSHALL A, et al. Towards scalable and channel-robust radio frequency fingerprint identification for LoRa[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 774–787. doi: 10.1109/TIFS.2022.3152404.
|
| [84] |
SHEN Guanxiong, ZHANG Junqing, MARSHALL A, et al. Towards receiver-agnostic and collaborative radio frequency fingerprint identification[J]. IEEE Transactions on Mobile Computing, 2024, 23(7): 7618–7634. doi: 10.1109/TMC.2023.3340039.
|
| [85] |
UZUNDURUKAN E, DALVEREN Y, and KARA A. A database for the radio frequency fingerprinting of Bluetooth devices[J]. Data, 2020, 5(2): 55. doi: 10.3390/data5020055.
|
| [86] |
俞宁宁, 毛盛健, 周成伟, 等. DroneRFa: 用于侦测低空无人机的大规模无人机射频信号数据集[J]. 电子与信息学报, 2024, 46(4): 1147–1156. doi: 10.11999/JEIT230570.
YU Ningning, MAO Shengjian, ZHOU Chengwei, et al. DroneRFa: A large-scale dataset of drone radio frequency signals for detecting low-altitude drones[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1147–1156. doi: 10.11999/JEIT230570.
|
| [87] |
任俊宇, 俞宁宁, 周成伟, 等. DroneRFb-DIR: 用于非合作无人机个体识别的射频信号数据集[J]. 电子与信息学报, 2025, 47(3): 573–581. doi: 10.11999/JEIT240804.
REN Junyu, YU Ningning, ZHOU Chengwei, et al. DroneRFb-DIR: An RF signal dataset for non-cooperative drone individual identification[J]. Journal of Electronics and Information Technology, 2025, 47(3): 573–581. doi: 10.11999/JEIT240804.
|
| [88] |
JANG H, YANG W, KIM H, et al. MOANA: Multi-radar dataset for maritime odometry and autonomous navigation application[EB/OL]. https://doi.org/10.48550/arXiv.2412.03887, 2024.
|
| [89] |
ZENG Miyi, YAO Yue, LIU Hong, et al. A specific emitter identification system design for crossing signal modes in the air traffic control radar beacon system and wireless devices[J]. Sensors, 2023, 23(20): 8576. doi: 10.3390/s23208576.
|
| [90] |
ULLAH N, KHAN J A, DE FALCO I, et al. Explainable artificial intelligence: Importance, use domains, stages, output shapes, and challenges[J]. ACM Computing Surveys, 2025, 57(4): 94. doi: 10.1145/3705724.
|
| [91] |
TU Yu, LIN Yun, HOU Changbo, et al. Complex-valued networks for automatic modulation classification[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 10085–10089. doi: 10.1109/TVT.2020.3005707.
|
| [92] |
TU Ya, LIN Yun, ZHA Haoran, et al. Large-scale real-world radio signal recognition with deep learning[J]. Chinese Journal of Aeronautics, 2022, 35(9): 35–48. doi: 10.1016/j.cja.2021.08.016.
|
| [93] |
桂冠, 陶梦圆, 王诚, 等. 面向特定辐射源识别的小样本学习方法综述[J]. 南通大学学报(自然科学版), 2023, 22(3): 1–16. doi: 10.12194/j.ntu.20220928001.
GUI Guan, TAO Mengyuan, WANG Cheng, et al. Survey of few-shot learning methods for specific emitter identification[J]. Journal of Nantong University (Natural Science Edition), 2023, 22(3): 1–16. doi: 10.12194/j.ntu.20220928001.
|
| [94] |
李杰然. 基于盒维数的灵巧噪声干扰识别方法[J]. 海军航空大学学报, 2022, 37(2): 191–195. doi: 10.7682/j.issn.2097-1427.2022.02.005.
LI Jieran. Method of smart noise jamming recognition based on box dimension[J]. Journal of Naval Aviation University, 2022, 37(2): 191–195. doi: 10.7682/j.issn.2097-1427.2022.02.005.
|
| [95] |
杨淑媛, 杨晨, 冯志玺, 等. 电磁目标表征: 知识-数据联合驱动新范式[J]. 航空兵器, 2024, 31(2): 17–31. doi: 10.12132/ISSN.1673-5048.2024.0065.
YANG Shuyuan, YANG Chen, FENG Zhixi, et al. A new paradigm for knowledge-data driven electromagnetic target representation[J]. Aero Weaponry, 2024, 31(2): 17–31. doi: 10.12132/ISSN.1673-5048.2024.0065.
|
| [96] |
张茜茜, 王禹, 林云, 等. 基于深度学习的自动调制识别方法综述[J]. 无线电通信技术, 2022, 48(4): 697–710. doi: 10.3969/j.issn.1003-3114.2022.04.017.
ZHANG Xixi, WANG Yu, LIN Yun, et al. A comprehensive survey of deep learning-based automatic modulation recognition methods[J]. Radio Communications Technology, 2022, 48(4): 697–710. doi: 10.3969/j.issn.1003-3114.2022.04.017.
|
| [97] |
XU Huali, ZHI Shuaifeng, SUN Shuzhou, et al. Deep learning for cross-domain few-shot visual recognition: A survey[J]. ACM Computing Surveys, 2025, 57(8): 215. doi: 10.1145/3718362.
|