Turn off MathJax
Article Contents
YAN Wenjun, LIU Kangsheng, LING Qin, et al. Survey of cross-scenario specific emitter identification technology[J]. Journal of Radars, in press. doi: 10.12000/JR25166
Citation: YAN Wenjun, LIU Kangsheng, LING Qin, et al. Survey of cross-scenario specific emitter identification technology[J]. Journal of Radars, in press. doi: 10.12000/JR25166

Survey of Cross-Scenario Specific Emitter Identification Technology

DOI: 10.12000/JR25166 CSTR: 32380.14.JR25166
Funds:  The National Natural Science Foundation of China (62371465), The Taishan Scholars Project Special Fund (ts201511020), Youth Innovation Teams in Shandong Province Fund (2022KJ084)
More Information
  • Specific emitter identification (SEI) relies on subtle differences in the radio-frequency fingerprints of device-emitted signals to determine the emitter identity attributes. SEI plays a fundamental role in wireless security, spectrum management, and situational awareness. However, as wireless scenarios become increasingly diverse and dynamic, deep learning models trained in a single domain (where the source and target domains share the same distribution) often suffer severe performance degradation in real-world settings such as cross-receiver and cross-time scenarios. This degradation has not yet been comprehensively analyzed. To address this issue, this paper first classifies SEI according to cross-scenario types, and then systematically reviews mainstream algorithm frameworks and representative SEI methods, with a particular focus on the core ideas and key technologies underlying each method. It also summarizes the main open-source cross-scenario SEI datasets. Finally, the paper identifies current research bottlenecks and outlines potential future directions, aiming to facilitate advances in SEI theories and methodologies applicable to complex electromagnetic environments.

     

  • loading
  • [1]
    GOK G, ALP Y K and ARIKAN O. A new method for specific emitter identification with results on real radar measurements[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3335–3346. doi: 10.1109/TIFS.2020.2988558.
    [2]
    WANG Cheng, FU Xue, WANG Yu, et al. Interpolative metric learning for few-shot specific emitter identification[J]. IEEE Transactions on Vehicular Technology, 2023, 72(12): 16851–16855. doi: 10.1109/TVT.2023.3296120.
    [3]
    XING Yuexiu, HU Aiqun, ZHANG Junqing, et al. Design of a robust radio-frequency fingerprint identification scheme for multimode LFM radar[J]. IEEE Internet of Things Journal, 2020, 7(10): 10581–10593. doi: 10.1109/JIOT.2020.3003692.
    [4]
    XU Zhengwei, HAN Guangjie, LIU Li, et al. A lightweight specific emitter identification model for IIoT devices based on adaptive broad learning[J]. IEEE Transactions on Industrial Informatics, 2023, 19(5): 7066–7075. doi: 10.1109/TII.2022.3206309.
    [5]
    LIN Yun, TU Ya, and DOU Zheng. An improved neural network pruning technology for automatic modulation classification in edge devices[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5): 5703–5706. doi: 10.1109/TVT.2020.2983143.
    [6]
    谭凯文, 张立民, 闫文君, 等. 面向非均衡类别的半监督辐射源识别方法[J]. 雷达学报, 2022, 11(4): 713–727. doi: 10.12000/JR22043.

    TAN Kaiwen, ZHANG Limin, YAN Wenjun, et al. A semi-supervised emitter identification method for imbalanced category[J]. Journal of Radars, 2022, 11(4): 713–727. doi: 10.12000/JR22043.
    [7]
    赵雨睿, 黄知涛, 王翔. 基于相空间重构的辐射源个体识别技术综述[J]. 雷达学报, 2023, 12(4): 713–737. doi: 10.12000/JR23057.

    ZHAO Yurui, HUANG Zhitao, and WANG Xiang. A review of specific emitter identification based on phase space reconstruction[J]. Journal of Radars, 2023, 12(4): 713–737. doi: 10.12000/JR23057.
    [8]
    张顺生, 丁宦城, 王文钦. 面向辐射源识别的多尺度特征提取与特征选择网络[J]. 国防科技大学学报, 2024, 46(6): 141–148. doi: 10.11887/j.cn.202406015.

    ZHANG Shunsheng, DING Huancheng, and WANG Wenqin. Multi-scale feature extraction and feature selection network for radiation identification[J]. Journal of National University of Defense Technology, 2024, 46(6): 141–148. doi: 10.11887/j.cn.202406015.
    [9]
    季鹏飞. 单比特超宽带数字信道化接收机关键技术研究[D]. 长沙: 国防科技大学, 2022. doi: 10.27052/d.cnki.gzjgu.2022.000058.

    JI Pengfei. Research on key technology of monobit UWB digital channelized receiver[D]. Changsha: National University of Defense Technology, 2022. doi: 10.27052/d.cnki.gzjgu.2022.000058.
    [10]
    CHEN Qi, YANG Lingxiao, LAI Jianhuang, et al. Self-supervised image-specific prototype exploration for weakly supervised semantic segmentation[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 4278–4288. doi: 10.1109/CVPR52688.2022.00425.
    [11]
    JIANG Pengtao, YANG Yuqi, HOU Qibin, et al. L2G: A simple local-to-global knowledge transfer framework for weakly supervised semantic segmentation[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 16865–16875. doi: 10.1109/CVPR52688.2022.01638.
    [12]
    李昕. 基于无监督学习的通信辐射源个体识别技术研究[D]. 长沙: 国防科技大学, 2019. doi: 10.27052/d.cnki.gzjgu.2019.000718.

    LI Xin. Research on individual communication transmitter identification based on unsupervised learning[D]. Changsha: National University of Defense Technology, 2019. doi: 10.27052/d.cnki.gzjgu.2019.000718.
    [13]
    PERSONS J B, WONG L J, MOORE M O, et al. Classification of radio signals using truncated Gaussian discriminant analysis of convolutional neural network-derived features[C]. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM), Rockville, USA, 2022: 304–310. doi: 10.1109/MILCOM55135.2022.10017724.
    [14]
    王天池, 俞璐. 迁移学习及其在通信辐射源个体识别中的应用[J]. 通信技术, 2022, 55(3): 265–273. doi: 10.3969/j.issn.1002-0802.2022.03.001.

    WANG Tianchi and YU Lu. Transfer learning and its application in communication emitter identification[J]. Communications Technology, 2022, 55(3): 265–273. doi: 10.3969/j.issn.1002-0802.2022.03.001.
    [15]
    TAN Haoyue, ZHANG Zhenxi, LI Yu, et al. Multi-scale feature fusion and distribution similarity network for few-shot automatic modulation classification[J]. IEEE Signal Processing Letters, 2024, 31: 2890–2894. doi: 10.1109/LSP.2024.3470762.
    [16]
    马宾, 王一利, 徐健, 等. 基于双向生成对抗网络的感知哈希图像内容取证算法[J]. 计算机学报, 2023, 46(12): 2551–2572. doi: 10.11897/SP.J.1016.2023.02551.

    MA Bin, WANG Yili, XU Jian, et al. A bidirectional generative adversarial network-based perceptual hash algorithm for image content forensics[J]. Chinese Journal of Computers, 2023, 46(12): 2551–2572. doi: 10.11897/SP.J.1016.2023.02551.
    [17]
    李奇真, 刘佳旭, 梁先明, 等. 基于深度学习的跨域辐射源个体识别综述[J]. 电讯技术, 2024, 64(7): 1163–1174. doi: 10.20079/j.issn.1001-893x.231030001.

    LI Qizhen, LIU Jiaxu, LIANG Xianming, et al. Cross-domain specific emitter identification based on deep learning: A comprehensive survey[J]. Telecommunication Engineering, 2024, 64(7): 1163–1174. doi: 10.20079/j.issn.1001-893x.231030001.
    [18]
    张涛涛, 谢钧, 乔平娟. 基于域适应的辐射源个体识别研究综述[J]. 软件导刊, 2024, 23(6): 205–213. doi: 10.11907/rjdk.241261.

    ZHANG Taotao, XIE Jun, and QIAO Pingjuan. A review of specific emitter identification based on domain adaptation[J]. Software Guide, 2024, 23(6): 205–213. doi: 10.11907/rjdk.241261.
    [19]
    YAN Wenjun, LING Qing, YU Keyuan, et al. A pseudolabel method with semantic drift for specific emitter identification[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(3): 6217–6235. doi: 10.1109/TAES.2025.3527960.
    [20]
    肖望. 面向未知类别的跨域辐射源个体识别方法研究与实现[D]. 电子科技大学, 2025. DOI: 10.27005/d.cnki.gdzku.2025.000389.

    Xiao Wang. Research and Implementation of Cross-Domain Radiation Source Individual Recognition Method for Unknown Categories [D]. University of Electronic Science and Technology of China, 2025. DOI: 10.27005/d.cnki.gdzku.2025.000389.
    [21]
    ZHA Xiong, LI Tianyun, QIU Zhaoyang, et al. Cross-receiver radio frequency fingerprint identification based on contrastive learning and subdomain adaptation[J]. IEEE Signal Processing Letters, 2023, 30: 70–74. doi: 10.1109/LSP.2023.3241592.
    [22]
    Y. Zhang, Z. Zhou, Y. Cao, G. Li and X. Li, "Improved Specific Emitter Identification Based on Margin Disparity Discrepancy in Varying Modulation Scenarios," in IEEE Signal Processing Letters, vol. 32, pp. 3375-3379, 2025, doi: 10.1109/LSP.2025.3597100.
    [23]
    杜贵琪. 基于人工智能的射频指纹识别技术研究[D]. 成都: 电子科技大学, 2022. doi: 10.27005/d.cnki.gdzku.2022.004593.

    DU Guiqi. Radio frequency fingerprint identification technology study based on artificial intelligence[D]. Chengdu: University of Electronic Science and Technology of China, 2022. doi: 10.27005/d.cnki.gdzku.2022.004593.
    [24]
    YANG Lu, CAMTEPE S, GAO Yansong, et al. On the use of power amplifier nonlinearity quotient to improve radio frequency fingerprint identification in time-varying channels[C]. 2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Toronto, Canada, 2023: 1–7. doi: 10.1109/PIMRC56721.2023.10293946.
    [25]
    HAMDAOUI B and ELMAGHBUB A. Deep-learning-based device fingerprinting for increased LoRa-IoT security: Sensitivity to network deployment changes[J]. IEEE Network, 2022, 36(3): 204–210. doi: 10.1109/MNET.001.2100553.
    [26]
    王天池, 俞璐, 赫德军. 基于对抗的一致性正则半监督辐射源个体识别方法[J]. 计算机测量与控制, 2023, 31(2): 204–209. doi: 10.16526/j.cnki.11-4762/tp.2023.02.032.

    WANG Tianchi, YU Lu, and HE Dejun. Individual identification method of adversarial-based consistency regularization semi-supervised emitter[J]. Computer Measurement & Control, 2023, 31(2): 204–209. doi: 10.16526/j.cnki.11-4762/tp.2023.02.032.
    [27]
    WANG Jian, ZHANG Bangning, ZHANG Jie, et al. Specific emitter identification based on deep adversarial domain adaptation[C]. 2021 4th International Conference on Information Communication and Signal Processing (ICICSP), Shanghai, China, 2021: 104–109. doi: 10.1109/ICICSP54369.2021.9611854.
    [28]
    查浩然, 刘畅, 王巨震, 等. 面向无人机辐射源个体识别的域适应模型设计[J]. 信号处理, 2024, 40(4): 650–660. doi: 10.16798/j.issn.1003-0530.2024.04.004.

    ZHA Haoran, LIU Chang, WANG Juzhen, et al. Design of domain-adaptation model for specific emitter identification of UAV signal[J]. Journal of Signal Processing, 2024, 40(4): 650–660. doi: 10.16798/j.issn.1003-0530.2024.04.004.
    [29]
    ZHANG Maomao, WEI Guofeng, TANG Peng, et al. Semi-supervised domain adaptation for automatic modulation recognition in unseen scenarios[J]. IEEE Transactions on Cognitive Communications and Networking, 2025, 11(3): 1609–1622. doi: 10.1109/TCCN.2024.3465648.
    [30]
    REUS-MUNS G, JAISINGHANI D, SANKHE K, et al. Trust in 5G open RANs through machine learning: RF fingerprinting on the POWDER PAWR platform[C]. 2020 IEEE Global Communications Conference, Taipei, China, 2020: 1–6. doi: 10.1109/GLOBECOM42002.2020.9348261.
    [31]
    ZHANG Chuanting, DANG Shuping, ZHANG Junqing, et al. Federated radio frequency fingerprinting with model transfer and adaptation[C]. 2023 IEEE Conference on Computer Communications Workshops, Hoboken, USA, 2023: 1–6. doi: 10.1109/INFOCOMWKSHPS57453.2023.10226112.
    [32]
    ZHANG Xinliang, LI Tianyun, GONG Pei, et al. Variable-modulation specific emitter identification with domain adaptation[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 380–395. doi: 10.1109/TIFS.2022.3223794.
    [33]
    ELMAGHBUB A and HAMDAOUI B. A needle in a haystack: Distinguishable deep neural network features for domain-agnostic device fingerprinting[C]. 2023 IEEE Conference on Communications and Network Security (CNS), Orlando, USA, 2023, pp. 1–9. doi: 10.1109/CNS59707.2023.10288752.
    [34]
    刘剑锋, 于宏毅, 杜剑平, 等. 基于领域自适应的动态噪声辐射源个体识别[J]. 信号处理, 2021, 37(6): 1000–1007. doi: 10.16798/j.issn.1003-0530.2021.06.012.

    LIU Jianfeng, YU Hongyi, DU Jianping, et al. Specific emitter identification under dynamic noise based on domain adaptation[J]. Journal of Signal Processing, 2021, 37(6): 1000–1007. doi: 10.16798/j.issn.1003-0530.2021.06.012.
    [35]
    ZHENG Yanan, YING Wenwei, HONG Shaohua, et al. A method for cross-receiver specific emitter identification based on CBAM-CNN-BDA[C]. 2022 IEEE 4th International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Dali, China, 2022: 1320–1324. doi: 10.1109/ICCASIT55263.2022.9987240.
    [36]
    YANG Haifen, ZHANG Hao, WANG Houjun, et al. A novel approach for unlabeled samples in radiation source identification[J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 354–359. doi: 10.23919/JSEE.2022.000037.
    [37]
    LONG Mingsheng, CAO Yue, WANG Jianmin, et al. Learning transferable features with deep adaptation networks[C]. 32nd International Conference on Machine Learning, Lille, France, 2015: 97–105.
    [38]
    史萌恺. 跨接收机辐射源个体识别方法研究[D]. 郑州: 战略支援部队信息工程大学, 2021. doi: 10.27188/d.cnki.gzjxu.2021.000048.

    SHI Mengkai. Research on cross-receiver specific emitter identification method[D]. Zhengzhou: PLA Strategic Support Force Information Engineering University, 2021. doi: 10.27188/d.cnki.gzjxu.2021.000048.
    [39]
    郭梁. 基于迁移学习的辐射源识别技术研究[D]. 成都: 电子科技大学, 2021. doi: 10.27005/d.cnki.gdzku.2021.004912.

    GUO Liang. Research on special emitter identification technology based on transfer learning[D]. Chengdu: University of Electronic Science and Technology of China, 2021. doi: 10.27005/d.cnki.gdzku.2021.004912.
    [40]
    CHANG C, HSIEH C, CHIANG C, et al. Domain-specific batch normalization for unsupervised domain adaptation[C]. CVPR, 2019: 7354–7362.
    [41]
    WANG Tianchi, YU Lu, WANG Wenyu, et al. Specific emitter identification based on the multi-discrepancy deep adaptation network[J]. IET Radar, Sonar & Navigation, 2022, 16(12): 2079–2088. doi: 10.1049/rsn2.12318.
    [42]
    WU Dongming, SHI Junpeng, LI Zhihui, et al. Contrastive semi-supervised learning with pseudo-label for radar signal automatic modulation recognition[J]. IEEE Sensors Journal, 2024, 24(19): 30399–30411. doi: 10.1109/JSEN.2024.3439704.
    [43]
    郑博元, 丛迅超, 胡超, 等. 自监督双流融合的小样本雷达辐射源识别方法[J]. 电讯技术, 2023, 63(9): 1340–1347. doi: 10.20079/j.issn.1001-893x.230426006.

    ZHENG Boyuan, CONG Xunchao, HU Chao, et al. Few-shot radar emitter identification based on self-supervised dual-stream fusion[J]. Telecommunication Engineering, 2023, 63(9): 1340–1347. doi: 10.20079/j.issn.1001-893x.230426006.
    [44]
    MACKEY S, ZHAO Tianya, WANG Xuyu, et al. Cross-domain adaptation for RF fingerprinting using prototypical networks[C]. 20th ACM Conference on Embedded Networked Sensor Systems, Boston, USA, 2022: 812–813. doi: 10.1145/3560905.3568100.
    [45]
    CHEN Jun, WONG W K, and HAMDAOUI B. Unsupervised contrastive learning for robust RF device fingerprinting under time-domain shift[C]. IEEE International Conference on Communications, Denver, USA, 2024: 3567–3572. doi: 10.1109/ICC51166.2024.10622173.
    [46]
    LING Qing, YAN Wenjun, ZHANG Yuchen, et al. Transfer learning method for specific emitter identification based on pseudo-labelling and meta-learning[J]. IET Radar, Sonar & Navigation, 2024, 18(9): 1460–1473. doi: 10.1049/rsn2.12579.
    [47]
    WEI Haojie, FANG Min, LI Haixiang, et al. Prototype-based dual-alignment of multi-source domain adaptation for radar emitter recognition[J]. Signal Processing, 2025, 230: 109853. doi: 10.1016/j.sigpro.2024.109853.
    [48]
    YE Yalan, WANG Chunji, DONG Hai, et al. Cross-session specific emitter identification using adversarial domain adaptation with Wasserstein distance[C]. 2022 26th International Conference on Pattern Recognition (ICPR), Montreal, Canada, 2022: 3119–3124. doi: 10.1109/ICPR56361.2022.9956207.
    [49]
    朱佳明, 姚光乐, 王琛, 等. 电台辐射源个体识别的无监督域自适应方法[J]. 电子信息对抗技术, 2025, 40(3): 41–50. doi: 10.3969/j.issn.1674-2230.2025.03.006.

    ZHU Jiaming, YAO Guangle, WANG Chen, et al. Unsupervised domain adaptive method for specific emitter identification of radio[J]. Electronic Information Warfare Technology, 2025, 40(3): 41–50. doi: 10.3969/j.issn.1674-2230.2025.03.006.
    [50]
    WANG Yong, SHU Zhehao, FENG Yinzhi, et al. Enhancing cross-domain remote sensing scene classification by multi-source subdomain distribution alignment network[J]. Remote Sensing, 2025, 17(7): 1302. doi: 10.3390/rs17071302.
    [51]
    LIU Jiaxu, WANG Jiao, HUANG Hao, et al. Multi-scale iterative domain adaptation for specific emitter identification[J]. Applied Intelligence, 2024, 54(8): 6299–6318. doi: 10.1007/s10489-024-05484-0.
    [52]
    李林, 俞璐, 蒋曾辉, 等. 基于类特征对齐的多源域适应辐射源个体识别方法[J]. 通信技术, 2023, 56(10): 1137–1145. doi: 10.3969/j.issn.1002-0802.2023.10.003.

    LI Lin, YU Lu, JIANG Zenghui, et al. Special emitter identification based on multi-source domain adaptation using category feature alignment[J]. Communications Technology, 2023, 56(10): 1137–1145. doi: 10.3969/j.issn.1002-0802.2023.10.003.
    [53]
    ZHANG Jingbo, LIU Qingshuo, AN Shaoqian, et al. Cross-domain few-shot specific emitter identification via contrastive self-supervised learning[J]. IEEE Communications Letters, 2025, 29(7): 1564–1568. doi: 10.1109/LCOMM.2025.3568388.
    [54]
    YANG Jian, ZHU Shaoxian, WEN Zhongyi, et al. Cross-receiver radio frequency fingerprint identification: A source-free adaptation approach[J]. Sensors, 2025, 25(14): 4451. doi: 10.3390/s25144451.
    [55]
    LI Ziying, FU Xiongjun, DONG Jian, et al. Radar signal sorting via graph convolutional network and semi-supervised learning[J]. IEEE Signal Processing Letters, 2025, 32: 421–425. doi: 10.1109/LSP.2024.3519884.
    [56]
    ZHANG Xixi, WANG Yu, HUANG Hao, et al. Few-shot automatic modulation classification using architecture search and knowledge transfer in radar–communication coexistence scenarios[J]. IEEE Internet of Things Journal, 2024, 11(19): 32067–32078. doi: 10.1109/JIOT.2024.3423018.
    [57]
    BASHA N, HAMDAOUI B, SIVANESAN K, et al. Channel-resilient deep-learning-driven device fingerprinting through multiple data streams[J]. IEEE Open Journal of the Communications Society, 2023, 4: 118–133. doi: 10.1109/OJCOMS.2022.3233372.
    [58]
    MOHANTI S, SOLTANI N, SANKHE K, et al. AirID: Injecting a custom RF fingerprint for enhanced UAV identification using deep learning[C]. 2020 IEEE Global Communications Conference, Taipei, China, 2020: 1–6. doi: 10.1109/GLOBECOM42002.2020.9322561.
    [59]
    RESTUCCIA F, D’ORO S, AL-SHAWABKA A, et al. DeepFIR: Channel-robust physical-layer deep learning through adaptive waveform filtering[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 8054–8066. doi: 10.1109/TWC.2021.3089878.
    [60]
    D’ORO S, RESTUCCIA F, and MELODIA T. Can you fix my neural network? Real-time adaptive waveform synthesis for resilient wireless signal classification[C]. 2021 IEEE International Conference on Computer Communications, Vancouver, Canada, 2021: 1–10. doi: 10.1109/INFOCOM42981.2021.9488865.
    [61]
    SOLTANI N, SANKHE K, DY J, et al. More is better: Data augmentation for channel-resilient RF fingerprinting[J]. IEEE Communications Magazine, 2020, 58(10): 66–72. doi: 10.1109/MCOM.001.2000180.
    [62]
    SHEN Guanxiong, ZHANG Junqing, MARSHALL A, et al. Toward length-versatile and noise-robust radio frequency fingerprint identification[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 2355–2367. doi: 10.1109/TIFS.2023.3266626.
    [63]
    GONG Jialiang, XU Xiaodong, and LEI Yingke. Unsupervised specific emitter identification method using radio-frequency fingerprint embedded InfoGAN[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2898–2913. doi: 10.1109/TIFS.2020.2978620.
    [64]
    孙丽婷, 黄知涛, 王翔, 等. 辐射源指纹特征提取方法述评[J]. 雷达学报, 2020, 9(6): 1014–1031. doi: 10.12000/JR19115.

    SUN Liting, HUANG Zhitao, WANG Xiang, et al. Overview of radio frequency fingerprint extraction in specific emitter identification[J]. Journal of Radars, 2020, 9(6): 1014–1031. doi: 10.12000/JR19115.
    [65]
    GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096–2030.
    [66]
    黄颖坤, 金炜东, 颜康, 等. 基于距离特征的雷达辐射源信号识别方法[J]. 系统仿真学报, 2021, 33(12): 2959–2966. doi: 10.16182/j.issn1004731x.joss.21-FZ0808.

    HUANG Yingkun, JIN Weidong, YAN Kang, et al. Radar emitter signal identification via distance features[J]. Journal of System Simulation, 2021, 33(12): 2959–2966. doi: 10.16182/j.issn1004731x.joss.21-FZ0808.
    [67]
    史亚, 张文博, 朱明哲, 等. 雷达辐射源个体识别综述[J]. 电子与信息学报, 2022, 44(6): 2216–2229. doi: 10.11999/JEIT210161.

    SHI Ya, ZHANG Wenbo, ZHU Mingzhe, et al. Specific radar emitter identification: A comprehensive review[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2216–2229. doi: 10.11999/JEIT210161.
    [68]
    崔邦彦, 田润澜, 王东风, 等. 基于注意力机制和改进CLDNN的雷达辐射源识别[J]. 系统工程与电子技术, 2021, 43(5): 1224–1231. doi: 10.12305/j.issn.1001-506X.2021.05.09.

    CUI Bangyan, TIAN Runlan, WANG Dongfeng, et al. Radar emitter identification based on attention mechanism and improved CLDNN[J]. Systems Engineering and Electronics, 2021, 43(5): 1224–1231. doi: 10.12305/j.issn.1001-506X.2021.05.09.
    [69]
    刘钊, 马爽, 张梦杰, 等. 多径条件下的雷达辐射源个体识别方法[J]. 电子学报, 2023, 51(6): 1654–1665. doi: 10.12263/DZXB.20220990.

    LIU Zhao, MA Shuang, ZHANG Mengjie, et al. Radar specific emitter identification method under multipath conditions[J]. Acta Electronica Sinica, 2023, 51(6): 1654–1665. doi: 10.12263/DZXB.20220990.
    [70]
    张立民, 谭凯文, 闫文君, 等. 基于多级跳线残差网络的雷达辐射源识别[J]. 系统工程与电子技术, 2022, 44(7): 2148–2156. doi: 10.12305/j.issn.1001-506X.2022.07.10.

    ZHANG Limin, TAN Kaiwen, YAN Wenjun, et al. Radar emitter recognition based on multi-level jumper residual network[J]. Systems Engineering and Electronics, 2022, 44(7): 2148–2156. doi: 10.12305/j.issn.1001-506X.2022.07.10.
    [71]
    张涛涛, 谢钧, 乔平娟. 基于多源无监督域适应的辐射源个体识别方法[J]. 计算机与现代化, 2025(3): 45–51. doi: 10.3969/j.issn.1006-2475.2025.03.007.

    ZHANG Taotao, XIE Jun, and QIAO Pingjuan. Specific emitter identification method based on multi-source unsupervised domain adaptation[J]. Computer and Modernization, 2025(3): 45–51. doi: 10.3969/j.issn.1006-2475.2025.03.007.
    [72]
    PENG Xingchao, BAI Qinxun, XIA Xide, et al. Moment matching for multi-source domain adaptation[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 1406–1415. doi: 10.1109/ICCV.2019.00149.
    [73]
    AWASTHI A K, GAROV A K, SHARMA M, et al. GNN model based on node classification forecasting in social network[C]. 2023 International Conference on Artificial Intelligence and Smart Communication (AISC), Greater Noida, India, 2023: 1039–1043. doi: 10.1109/AISC56616.2023.10085118.
    [74]
    WEN Xiaomin, FANG Shengliang, and FAN Youchen. Reconstruction of radio environment map based on multi-source domain adaptive of graph neural network for regression[J]. Sensors, 2024, 24(8): 2523. doi: 10.3390/s24082523.
    [75]
    AL-SHAWABKA A, RESTUCCIA F, D’ORO S, et al. Exposing the fingerprint: Dissecting the impact of the wireless channel on radio fingerprinting[C]. 2020 IEEE Conference on Computer Communications, Toronto, Canada, 2020: 646–655. doi: 10.1109/INFOCOM41043.2020.9155259.
    [76]
    陈翔, 汪连栋, 许雄, 等. 基于Raw I/Q和深度学习的射频指纹识别方法综述[J]. 雷达学报, 2023, 12(1): 214–234. doi: 10.12000/JR22140.

    CHEN Xiang, WANG Liandong, XU Xiong, et al. A review of radio frequency fingerprinting methods based on raw I/Q and deep learning[J]. Journal of Radars, 2023, 12(1): 214–234. doi: 10.12000/JR22140.
    [77]
    SANKHE K, BELGIOVINE M, ZHOU Fan, et al. ORACLE: Optimized radio classification through convolutional neural networks[C]. 2019 IEEE Conference on Computer Communications, Paris, France, 2019: 370–378. doi: 10.1109/INFOCOM.2019.8737463.
    [78]
    HANNA S, KARUNARATNE S, and CABRIC D. WiSig: A large-scale WiFi signal dataset for receiver and channel agnostic RF fingerprinting[J]. IEEE Access, 2022, 10: 22808–22818. doi: 10.1109/ACCESS.2022.3154790.
    [79]
    ELMAGHBUB A and HAMDAOUI B. LoRa device fingerprinting in the wild: Disclosing RF data-driven fingerprint sensitivity to deployment variability[J]. IEEE Access, 2021, 9: 142893–142909. doi: 10.1109/ACCESS.2021.3121606.
    [80]
    B. B. C, A. Deshmukh and A. V. Narasimhadhan, "Modulation and signal class labelling with active learning and classification using machine learning," 2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 2022, pp. 1-5, doi: 10.1109 /CONECCT55679.2022.9865826.
    [81]
    FADUL M K M, REISING D R, WEERASENA L P, et al. Improving RF-DNA fingerprinting performance in an indoor multipath environment using semi-supervised learning[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 3194–3209. doi: 10.1109/TIFS.2024.3360851.
    [82]
    SOLTANI N, REUS-MUNS G, SALEHI B, et al. RF fingerprinting unmanned aerial vehicles with non-standard transmitter waveforms[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15518–15531. doi: 10.1109/TVT.2020.3042128.
    [83]
    SHEN Guanxiong, ZHANG Junqing, MARSHALL A, et al. Towards scalable and channel-robust radio frequency fingerprint identification for LoRa[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 774–787. doi: 10.1109/TIFS.2022.3152404.
    [84]
    SHEN Guanxiong, ZHANG Junqing, MARSHALL A, et al. Towards receiver-agnostic and collaborative radio frequency fingerprint identification[J]. IEEE Transactions on Mobile Computing, 2024, 23(7): 7618–7634. doi: 10.1109/TMC.2023.3340039.
    [85]
    UZUNDURUKAN E, DALVEREN Y, and KARA A. A database for the radio frequency fingerprinting of Bluetooth devices[J]. Data, 2020, 5(2): 55. doi: 10.3390/data5020055.
    [86]
    俞宁宁, 毛盛健, 周成伟, 等. DroneRFa: 用于侦测低空无人机的大规模无人机射频信号数据集[J]. 电子与信息学报, 2024, 46(4): 1147–1156. doi: 10.11999/JEIT230570.

    YU Ningning, MAO Shengjian, ZHOU Chengwei, et al. DroneRFa: A large-scale dataset of drone radio frequency signals for detecting low-altitude drones[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1147–1156. doi: 10.11999/JEIT230570.
    [87]
    任俊宇, 俞宁宁, 周成伟, 等. DroneRFb-DIR: 用于非合作无人机个体识别的射频信号数据集[J]. 电子与信息学报, 2025, 47(3): 573–581. doi: 10.11999/JEIT240804.

    REN Junyu, YU Ningning, ZHOU Chengwei, et al. DroneRFb-DIR: An RF signal dataset for non-cooperative drone individual identification[J]. Journal of Electronics and Information Technology, 2025, 47(3): 573–581. doi: 10.11999/JEIT240804.
    [88]
    JANG H, YANG W, KIM H, et al. MOANA: Multi-radar dataset for maritime odometry and autonomous navigation application[EB/OL]. https://doi.org/10.48550/arXiv.2412.03887, 2024.
    [89]
    ZENG Miyi, YAO Yue, LIU Hong, et al. A specific emitter identification system design for crossing signal modes in the air traffic control radar beacon system and wireless devices[J]. Sensors, 2023, 23(20): 8576. doi: 10.3390/s23208576.
    [90]
    ULLAH N, KHAN J A, DE FALCO I, et al. Explainable artificial intelligence: Importance, use domains, stages, output shapes, and challenges[J]. ACM Computing Surveys, 2025, 57(4): 94. doi: 10.1145/3705724.
    [91]
    TU Yu, LIN Yun, HOU Changbo, et al. Complex-valued networks for automatic modulation classification[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 10085–10089. doi: 10.1109/TVT.2020.3005707.
    [92]
    TU Ya, LIN Yun, ZHA Haoran, et al. Large-scale real-world radio signal recognition with deep learning[J]. Chinese Journal of Aeronautics, 2022, 35(9): 35–48. doi: 10.1016/j.cja.2021.08.016.
    [93]
    桂冠, 陶梦圆, 王诚, 等. 面向特定辐射源识别的小样本学习方法综述[J]. 南通大学学报(自然科学版), 2023, 22(3): 1–16. doi: 10.12194/j.ntu.20220928001.

    GUI Guan, TAO Mengyuan, WANG Cheng, et al. Survey of few-shot learning methods for specific emitter identification[J]. Journal of Nantong University (Natural Science Edition), 2023, 22(3): 1–16. doi: 10.12194/j.ntu.20220928001.
    [94]
    李杰然. 基于盒维数的灵巧噪声干扰识别方法[J]. 海军航空大学学报, 2022, 37(2): 191–195. doi: 10.7682/j.issn.2097-1427.2022.02.005.

    LI Jieran. Method of smart noise jamming recognition based on box dimension[J]. Journal of Naval Aviation University, 2022, 37(2): 191–195. doi: 10.7682/j.issn.2097-1427.2022.02.005.
    [95]
    杨淑媛, 杨晨, 冯志玺, 等. 电磁目标表征: 知识-数据联合驱动新范式[J]. 航空兵器, 2024, 31(2): 17–31. doi: 10.12132/ISSN.1673-5048.2024.0065.

    YANG Shuyuan, YANG Chen, FENG Zhixi, et al. A new paradigm for knowledge-data driven electromagnetic target representation[J]. Aero Weaponry, 2024, 31(2): 17–31. doi: 10.12132/ISSN.1673-5048.2024.0065.
    [96]
    张茜茜, 王禹, 林云, 等. 基于深度学习的自动调制识别方法综述[J]. 无线电通信技术, 2022, 48(4): 697–710. doi: 10.3969/j.issn.1003-3114.2022.04.017.

    ZHANG Xixi, WANG Yu, LIN Yun, et al. A comprehensive survey of deep learning-based automatic modulation recognition methods[J]. Radio Communications Technology, 2022, 48(4): 697–710. doi: 10.3969/j.issn.1003-3114.2022.04.017.
    [97]
    XU Huali, ZHI Shuaifeng, SUN Shuzhou, et al. Deep learning for cross-domain few-shot visual recognition: A survey[J]. ACM Computing Surveys, 2025, 57(8): 215. doi: 10.1145/3718362.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(30) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint